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Abstract

The Hansen-Jagannathan (HJ) distance statistic is one of the most dominant measures
of model misspecification. However, the conventional HJ specification test procedure has
poor finite sample performance, and we show that it can be size distorted even in large
samples when (proxy) factors exhibit small correlations with asset returns. In other words,
applied researchers are likely to falsely reject a model even when it is correctly specified.
We provide two alternatives for the HJ statistic and two corresponding novel procedures
for model specification tests, which are robust against the presence of weak (proxy) factors,
and we also offer a novel robust risk premia estimator. Simulation exercises support our
theory. Our empirical application documents the non-reliability of the traditional HJ test
since it may produce counter-intuitive results, when comparing nested models, by rejecting
a four-factor model but not the reduced three-factor model, while our proposed methods
are practically more appealing and show support for a four-factor model for Fama French

portfolios.
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1 Introduction

Linear factor models have gained tremendous popularity in the empirical asset pricing literature,
see e.g. Fama and French (1993), Lettau and Ludvigson (2001), Kan and Zhou (2004), Kan and
Robotti (2008). The low dimensional factor structure in asset returns is well-documented (e.g.,
Kleibergen and Zhan (2015)), and Harvey et al. (2016) list hundreds of papers with factors that
attempt to explain the cross-section of expected returns. Since so many factors are introduced, the
asset pricing models are at best approximations, and proposed factors are at best proxies for some
unobserved common factors.

Given the fact that there is a large pool of proposed factors and the linear asset pricing models
are at best approximations, it is more appealing to determine whether or not the data reject a
model, namely how good a model can approximate the data than to identify important factors (or
factors with significant risk premia). The assessment of model performance is where specification
tests play a role. To evaluate these factors and diagnose the model specifications, the HJ distance,
proposed in Hansen and Jagannathan (1997), has emerged as one of the most dominant measures
of model misspecification in empirical asset pricing literature (e.g., Jagannathan and Wang (1996),
Kan and Zhou (2004)). However, the conventional HJ statistic can be unreliable.

We show that identical to the second pass R? studied in Kleibergen and Zhan (2015), the HJ
statistic can be a misleading gauge of model fit and is not a satisfactory model selection tool. More
importantly, we demonstrate that the specification test via the HJ statistic, which we refer to as the
HJ specification test in the sequel , is not reliable when models are weakly identified. The lack of
model identification can lead to spuriously significant risk premia (Kleibergen (2009), Bryzgalova
(2016), Anatolyev and Mikusheva (2018)), and it affects specification tests concerning the full
model as well. In an empirically relevant setting where proxy factors weakly correlate with the
unobserved common factors, the HJ specification test can be size distorted even in large samples.
The boundary, determined via the HJ specification test, between correct model specifications and

misspecifications begins to blur in these so-called weak identification cases. Another potential issue



would be the omitted-strong-factors problem. The resulting strong cross-sectional dependence in
the error term can exaggerate all sorts of distortions when some included (proxy)' factors are weak
(Kleibergen and Zhan (2015)).

One of the reasons for these failures is that sampling errors are no longer negligible asymptoti-
cally in the presence of weak (proxy) factors. Therefore, the conventional asymptotic justification
may fail in empirically relevant settings, as weak (proxy) factors are commonly observed in many
recent studies (e.g., Kleibergen (2009), Anatolyev and Mikusheva (2018)).

Recent papers have developed different techniques to incorporate some of these issues, most of
which focus on the identification and inference of risk premia. Bryzgalova (2016) provides an esti-
mation approach using shrinkage-based dimension-reduction technique which excludes weak /useless
(proxy) factors. Anatolyev and Mikusheva (2018) propose an estimation procedure based on
sample-splitting instrumental variables regression with proxies for the missing factor structure.
Giglio and Xiu (2017) propose a three-pass estimation procedure and bypass the omitted factors
bias by projecting risk premia of observed factors on those of strong factors extracted via principal
components analysis (PCA). Alongside with these estimation techniques there are identification
robust test statistics to correct for the overly optimistic statistical inference of the risk premia (e.g.
Kleibergen (2009), Kleibergen and Zhan (2019), Kleibergen et al. (2018)). As for the specifica-
tion tests of asset pricing models, Gospodinov et al. (2017) discuss the potential power loss of the
J specification test when spurious/useless factors, which are completely uncorrelated with asset
returns, are present.

This paper, instead of the spurious/useless factors, mainly focuses on problems resulting from
weak (proxy) factors that are minorly correlated with asset returns, and aim to improve the per-
formance of specification tests. To remedy the size distortion of the HJ test, we provide two
alternatives for the HJ statistic, based on which we propose two easy-to-implement specification

test procedures that are robust to the issues mentioned above.

!Sometimes researchers consider a latent factor structure in asset returns and regard included factors in
empirical studies as proxies for priced latent common factors (e.g., Kleibergen and Zhan (2015), Giglio and
Xiu (2017)), sometimes factors are assumed to be directly observed and priced weak common factors lead
to problems (e.g., Kleibergen (2009), Anatolyev and Mikusheva (2018)). We mostly adopt the former idea,
but our discussions and methods are also valid in the latter case, and we emphasize this by enclose the term
proxy in brackets.



Our first proposed test procedure is a two-step Bonferroni-type method, and it is robust against
identification issues when the number of asset returns is limited. This method takes into account
the identification strength via a first-step confidence set, and we verify that it improves power
compared with the J test.

Our second approach relies on a novel four-pass estimator, and the test procedure provides
valid inference results in an asymptotic framework where the number of assets is comparable to
the number of the observation periods. Our proposed four-pass estimator directly leads to a novel
risk premia estimator, and thus we also contribute to the literature on estimation of risk premia
in the presence of weak (proxy) factors and omitted factors. For linear asset pricing models,
the conventional approach for estimating risk premia is known as the Fama-Macbeth (FM) two-
pass estimation procedure (Fama and MacBeth (1973)), where risk premia estimates result from
regressing average asset returns on first-pass estimated risk exposures (factor loadings fs). The
two-pass procedure is easy to implement but can result in unreliable estimates and inference when
some included factors are not strongly correlated with asset returns such that their risk exposures
do not dominate corresponding sampling errors (Kleibergen (2009), Anatolyev and Mikusheva
(2018)), which resembles the failure of the 2SLS estimator in instrumental variable regression when
instruments are weak. Besides, Anatolyev and Mikusheva (2018) show that the missing factor
structure exacerbates the weak (proxy) factor problem. We show our risk premia estimator is
robust to the presence of both weak (proxy) factors and missing factors.

Our empirical application documents a strange behavior of the HJ test. Counter-intuitively,
it can reject a four-factor model but not the corresponding three-factor model nested within the
four-factor model. We attribute this behavior to the additional fourth factor being a weak proxy
factor which leads to a undesirably high rejection rate of the HJ test. Our proposed procedures do
not have this problem and reflect the factor structure in asset returns in a more informative way.

The paper is organized as follows: Section 2 reviews the basic model setting and shows the
drawbacks of the HJ statistic; Section 3 and 4 introduce our proposed model specification test
procedures, where Section 3 discusses our two-step Bonferroni-like method and Section 4 considers
an approach that is valid with a double-asymptotic framework; Section 5 presents results of our

empirical application.



We use the following notation: Px stands for X (X'X)~!X’ for a full column rank matrix
X, Mx for I — Px, X 3 for the upper triangular matrix from the Cholesky decomposition of the
positive definite matrix X such that X = (X %)’ X72. Besides, in the following discussions, the
notation would be more precise with N, T in the sub- or superscripts. For example to model the
weak (proxy) factors, it might be reasonable to use notations such as Sr n,dg 1N, VN1, 09 N T since
the parameter values may change according to the sample dimensions in order to model the local
to zero behavior. To avoid a cumbersome notation, we ignore these subscripts when there can be

no misunderstanding.

2 Models and Problems

In this section, we introduce linear asset pricing models and the conventional model selection and
specification test procedure based on the HJ distance. We use the term HJ statistic to denote the
conventional squared HJ distance estimator, and to distinguish it from the other two estimators,
our so-called HJN and HJS statistics, proposed in Sections 3 and 4.

We start by introducing our baseline model setting. We next derive asymptotic properties of

the HJ statistic in the presence of weak (proxy) factors to clarify the problems we focus on.

2.1 Baseline model setting

We work with the linear asset pricing model because of its popularity in empirical studies. It
imposes that all asset returns share common risk factors described by a small set of proposed
factors. We regard the proposed factors in empirical studies as proxies for latent ones in the form
as suggested in (Kleibergen and Zhan (2015)). Assumption 2.1 summarizes the baseline model

settings:

Assumption 2.1. For the N x 1 vector of asset gross returns r¢, we assume that

re = c+ Bfi + uy, (1)

with fi a K x 1 vector of (possibly) unobserved zero-mean factors and u; is an N x 1 vector of



idiosyncratic components, and with a K X 1 vector of proxy factors g;

ft :dg (Qt - Ng) + vy, (2)

where g = Egi, g 15 uncorrelated with ug, vy, dg is of full rank and g, v, us are stationary with

finite fourth moments. Furthermore,
c=1tnXo+ BAy, (3)

where Ao # 0 is the zero-beta return, Ay is a K x 1 vector of risk premia, and the parameter space

of Ao, Ay is compact.

Assumption 2.1 describes the beta representation of linear asset pricing models, and the DGP
is similar to the one employed in Kleibergen and Zhan (2015). The moment conditions (or in
other words the structural assumptions imposed on the constant term), ¢ = tnyAo + SAy, are
commonly used in linear asset pricing model (e.g. Cochrane (2009)). If f; is observed, then we
would have perfect proxies with d, = I, v; = 0. Therefore, this model setting also embeds the
model specification used in e.g. Kleibergen (2009), Anatolyev and Mikusheva (2018) where factors

f+ are assumed to be observed. Using the observed factors g;, model (1) can be rewritten as
e =cC+ /ngt + ’le,gﬂg, (4)

with 8y = Bdy, gt = g+ — 3,9 = Zthl 9t/T\ g = ugs + By (§ — pg) ugt = Py + us. The estimation
of the risk premia A, is usually accomplished by the FM two-pass estimator (Fama and MacBeth
(1973), Shanken (1992)). In the first pass, the risk exposures 3, are estimated by regressing asset
returns r; on a constant and factors g;, and in the second pass the FM estimator /):g results from
regressing average asset returns 7 = Zthl r¢/T on an N x 1 unity vector ¢y and the risk exposure
estimates Eg.

Another well-known representation of asset pricing models is the stochastic discount factor
(SDF) representation, based on which the HJ distance is defined. Cochrane (2009) shows that for

linear asset pricing models, there is a corresponding SDF m; that is linearly spanned by the latent



factors
my(0) = F, (5)

with F; = (1, f{)/, and re-scaled risk premia 6 = (1/\o, —Vf}l)\f/)\o). The moment conditions (3)

are then equivalent to the following ones

E (me(0o)re) = o, (6)

with ¢ an N X 1 unity vector with all entries equal to one. The population pricing errors which

are the deviations from the moment conditions (6) are denoted by
e(0) =iny — E (my(0)ry), (7)

With a linear SDF (5) e(0) =ty — ¢b, for ¢ = E (r.F}) a full column rank N x K matrix.

Hansen and Jagannathan (1997) (HJ) propose the minimum distance between the SDF of an
asset pricing model and a set of correct SDFs as a measure of model misspecification. It also serves
as a measure of goodness-of-fit. A smaller value of the HJ distance indicates a better model fit, and

this is used for model selection. The population squared HJ distance § has an explicit expression:
0% = inf e(0)Q; "e(), (8)

with @, = E(ryr}) a full column rank N x N matrix. With a linear SDF, after some simple
algebra, we can write the squared HJ distance explicitly as ¢y, <Q;1 — Qg (q’Q,qu)_1 q’Q;1> LN,
which is also numerically equal to /5 (Q; ! — Q' B(B'Q,;'B)"'B'Q, 1)y with B = (¢, ), and it
is zero if and only if moment conditions (6) hold. Given the observed proxy factors g;, the sample

counterpart of the squared HJ distance, the HJ statistic, is
82 =infe, 7(06)Q: ey r(6c) (9)
g HG g,T G [8 g,T G)-

In a linear asset pricing model, the sample pricing errors ey 7 (0g) = Ethl egt(0c)/T = 1N —



4e10G, egi(0) = in — 1Giba, qar = Siey mGY/T, Qr = S 1l )T, Gy = (1,3,)', and the

estimator resulting from this quadratic optimization problem is
o r A-1 -1 A
O = (QG,TQT» QG,T) qG,TQr LN- (10)

Jagannathan and Wang (1996) propose the HJ specification test by testing the moment con-
ditions (6) via the HJ statistic. Under the null hypothesis that the moment conditions (6) hold,
Jagannathan and Wang (1996) show that the asymptotic distribution of the HJ statistic follows a
weighted sum of y2(1) random variables, which is because of the weighting matrix used in the HJ
statistic. If we weight by the long-run covariance matrix of the sample pricing errors, we would
have a regular chi-square-type limiting distribution. However, since we weight the HJ statistic
differently with the second moment of asset returns as the weighting matrix, each of these x?(1)
random variables has a weight different from one. Therefore, the critical values for the HJ statistic

are obtained from the weighted sum of x?(1) random variables
N-K-1

Z Dis, (11)
i=1

with ; being independent x?(1) distributed random variables, and p; being the positive eigenvalues

of the matrix
ol (A-1 _ A1 I A1 1, A1) o
$5( Q7' - 07 aar (drQr'aor)  den Qi) 53,

with S = S7(fg) and S7(6¢) a consistent estimator of the long-run variance matrix of the sample
pricing errors e, 7(6g) (for example, one may simple choose Sr(0g) = %Zle egt(0c)eqgt(0c),

egt(0c) = v — G0 provided that Assumptions 2.1-2.3 hold).

2.2 Problems and asymptotic properties

Our interest lies in the performance of the HJ statistic in the presence of weak identification issues,
in particular, when observed proxies g; are only weakly correlated with asset returns. Ahn and

Gadarowski (2004) document the poor finite sample performances of the HJ specification test, and



they argue that the size distortion is due to the critical value of the test which requires the estimation
of the covariance matrix of e;(#) that performs badly with a limited number of observation periods.
This is also consistent with the findings in Kleibergen and Zhan (2019), Kleibergen et al. (2018).
In later parts, we show that not only in finite samples but also in large samples the HJ specification
test can be severely size distorted in the presence of weak identification issues. We focus on two
issues that can cause the potential deficiency of the HJ statistic.

1. Weak (prozy) factors. The HJ statistic depends on the estimator 5@. This is a GMM
estimator based on the moment conditions (6) with weighting matrix @r. Similar to the FM risk
premia estimator, this estimator can be constructed in two steps. In the first step the regressor in
the SDF, gg, is estimated via the estimator g, 7, and in the second step gg results from regressing
@r_ %L n~ on the first stage estimates Q\; %qu. This close link with the FM estimator raises concerns
for the quality of the 64 estimator.

The FM estimator is unreliable under weak identification (e.g., Kan and Zhang (1999), Kleiber-
gen (2009), Kleibergen and Zhan (2015), Kleibergen and Zhan (2019), Kleibergen et al. (2018),
Anatolyev and Mikusheva (2018)). For linear asset pricing models, the identification strength is
reflected by the rank of By = (¢, 8y) (e.g. Kleibergen and Zhan (2019)). The weak identification
issues result from the empirical observation that the matrix B, might be of reduced rank or near
reduced rank. For example, this can happen when some (proxy) factors used in the estimation are
weakly correlated with the asset returns. One way of modeling these weak (proxy) factors is to
consider a sequence of models (or a sequence of parameter values) such that along the sequence,
factor loadings are smaller and thus less informative for identifying risk premia. For example, sup-
pose the (8, matrix is small, modeled by a drifting to zero sequence of order O(1/ VT), then the
sampling errors in the first stage estimator Eg, which are of the same order, are no longer negligible.
These non-negligible sampling errors lead to the asymptotic invalidity of the FM estimator under
weak (proxy) factors.

Following the same reasoning, the asymptotic justification for the estimator é\g fails when g, is
small and comparable to its sampling error (see Theorem B.2). Since ¢, = 4V, with V, = Egg;,
we model weak (proxy) factors using drifting to zero risk exposures (see Assumption 2.3) to mimic

the behavior of a small g4, which is in line with the literature on weak factors (e.g. Kleibergen



(2009)).

2. The missing factor structure. Omitted factors have received attention in recent studies (e.g.,
Kleibergen and Zhan (2015), Giglio and Xiu (2017), Anatolyev and Mikusheva (2018)). When we
work with observed factors g; in a latent factor setting, equation (4) suggests that the omitted
factors v; contribute to the error term u, ¢, and we also allow that unobserved factors explain most
of the cross-sectional dependence in u,;. Similar to the discussion of the FM two-pass risk premia
estimator in Anatolyev and Mikusheva (2018) , the missing factor structure could exacerbate the
problem caused by the weak (proxy) factors and enlarge the bias in the estimator §g (see Theorem
B.2), as the presence of an unobserved (missing) factor structure in the error terms creates the
classical omitted-variables problem in the second step regression of the 59 estimator when some
(proxy) factors are weak.

Therefore, the HJ statistic may use an estimate that is potentially far away from the true value,
and thus selection and inference based on the HJ statistic can be misleading. Before we continue

to verify this, we make two assumptions.

Assumption 2.2. Suppose us can be decomposed into two parts: a missing factor structure with a
K, x1 (K, > 0) vector of unobserved strong factors z; and weakly cross-sectional correlated noise

€ty
Ut = Y2t + €, (12)

where (i) e; are independent from es, s # t and gy,Vt' with mean zero and bounded fourth mo-
ments sup; Eel, < L < oo; (ii) denote Q. = Eese}, then limyrtr(Q) /N =a > 0 and 0 < | <
lim inf x 7 Amin (2e) < lim SUpP N 7 Amax (Qe) < L < 00 with Apin(X) the smallest eigenvalues of ma-

4
triz X and Amax(X) the largest eigenvalues of matriz X ; (iii) E ‘ﬁ Zfil (2, — Ee?t)‘ < L < oo0.

Assumption 2.3. Denote Q, by the second moments of r, n = (nt,'y) with ng, = (c, 77,89) s NBy =
(ﬁgjl, \/TﬂgQ) yBgi = Pdg i = 1,2 being of dimension N x Kg;,i=1,2 (Kg1+Kgo =K, Kg2 >
0) and full column rank matrices. (i) for fixed N, we assume n'n is a (1+ K+ K,) x (1+ K+ K)
positive definite matriz; (ii) as N, T approach to infinity, N~'n'n converges to a (1+ K + K,) x

(1+ K + K) positive definite matriz.

10



Our framework involves the observed factors g;, and the omitted ones v, z;. They have factor
loadings 8y, 3, respectively. Assumption 2.3 specifies the strengths of these factors. The loadings,
Bg,2, of the K, proxy factors go; are modeled as drifting to zero sequences, so we call gs; weak
proxy factors. We do not restrict the strength of the priced latent factors f;, and allow for weak
priced latent factors. This assumption resembles the factor loading assumption in Anatolyev and
Mikusheva (2018), but our risk exposure matrix (34, 3,7) is of reduced rank.

Assumption 2.2, which is similar to assumptions in Onatski (2012) and Anatolyev and Miku-
sheva (2018), does not fully rule out the cross-sectional dependence in the idiosyncratic error term
e¢. This assumption allows the explanatory power of the cross-sectional variation in e; to be com-
parable to the weak proxy factors when N, T increase proportionally, and the weak identification
issue appears when the explanatory power of the proxy factors are roughly of the same order as e;.
When the cross sectional size N is fixed, the assumptions 2.2.(ii)-(iii) imposed on the noise term
e; hold naturally as long as Assumption 2.2.(i) holds and we can not really distinguish weak and
strong factors. In later parts when N is fixed, we do not make use of the assumptions imposed on
e; but only the independence assumption (Assumption 2.2.(i)). We assume that e; is independent
across periods which is consistent with the efficient market hypothesis, and since empirical studies

mostly use monthly or even less frequent data this is not a very unrealistic assumption.

Lemma 2.1. Suppose Assumption 2.1, B.1 hold, let T increase to infinity then
By =4 (¢, Bg) + 41, /VT

where By = qG’TQE;l,QG = Zthl GGy /T pp, = (¢c:¢ﬂg,1awﬁg,2) and vec(p,) being zero-mean
normal random vectors.

Proof: see Appendiz B.

Theorem 2.2. Suppose Assumptions B.1 and 2.1-2.3 hold, let T increase to infinity with fixed N

then the behavior of the HJ statistic is characterized by:

1

152 —q JngM i

. . \Us,
Qr 2 (nt +(O:wﬁ972)>

11



with Y5, = ¥p,Qc0G-

Proof: see Appendiz B.

Theorem 2.2 is derived assuming that the linear model is correctly specified, and it simply
suggests that with strong factors, K, 2 = 0, the weighted sum of x?’s provides a reasonable approx-

imation (Corollary 2.2.1).

Corollary 2.2.1. Suppose Assumption B.2 and the assumptions in Theorem 2.2 hold with K42 = 0,

then

16?2 ~q

N-K-1
Dixsg

i=1
with z; being independently x*(1) distributed random variables and p; being the positive eigenvalues
ol (Al ~_ ~_ 1 ~ 1\ al
of the matriz §3 (er -0 qer (dorQi'acr) a0 1) 55,

Proof: this is a direct result of Theorem 2.2.

However, the conventional specification test procedure can be unreliable and suffer from severe
size distortion even in large samples due to the irregular distribution of the HJ statistic (Corollary

2.2.2).

Corollary 2.2.2. Suppose the assumptions in Corollary 2.2.1 hold with 0 < K42 < K,
limsuplimsup P (ng > 51_a> =1
N T

where ¢1_q, is the conventional critical value derived from the distribution (11).

Proof: see Appendiz B.

Corollary 2.2.2 shows that under certain conditions the conventional specification test rejects
the model specification with probability converging to one even when the moment conditions hold.
Thus the conventional specification testing procedure based on the HJ statistic may mistake the
"weak identification” resulting from the weak (proxy) factors for model misspecification, and leads

to over-rejection when models are correctly specified.
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2.3 Simulation exercises

We conduct simulation exercises to show that the HJ distance statistic as a model selection criterion
might favor the presence of useless factors, and the HJ specification test suffers from severe size
distortions.

In the first simulation exercise (Figures 1, 2), we calibrate the data generating process to match
the data set of monthly gross asset returns on 25 size and book to market sorted portfolios from 1963
to 1998 and the three Fama French (FF) factors used by Lettau and Ludvigson (2001). The data is
simulated in the following way: we simulate three proxy factors g; ~ i.i.d N(0, Vg), three omitted
factors vy i.i.d ~ N(0.99Vr) and three strong factors are then generated by f; = 0.1 % g; + vs,. Vp
is calibrated to the sample covariance of the FF factors. We also generate three completely useless
factors wy ~ i.1.d.N (0, Vr). We then generate returns via r, = (y+8A+6 fi+ug, ug ~ i.0.d N(0, V),
where we set A to be the sample risk premia estimated via the FM two-pass estimator, § is the
sample slope parameter between the assets returns and FF factors, and V,, is the sample covariance
of the residuals resulting from regressing asset returns on a constant and FF factors from the data.

Figure 1 compares the density functions of the simulated HJ statistics evaluated with various
combinations of the factors g, f;, wy. For example, the black solid curve is drawn using three strong
factors fi, the black dashed curve is drawn with two strong factors fis, for. Ideally, the black solid
curve should be the most left, since the model with three strong factors should be most likely to be
selected by the HJ statistic. However, comparing the red solid and black solid curves shows that
adding additional useless factors leads to a shift of the distribution to the left, so it reduces the
HJ statistic and leads to a ”preferred model”. The blue sold curve illustrates the density function
of the HJ statistic of the model with three weak proxy factors. By construction, the moment
conditions (6) are satisfied by the three weak proxy factors, and this model is correctly specified.
If we compare the blue solid curve with the blacked dashed one which is constructed with only two
strong factors, then the misspecified model with two strong factors is more likely to be selected.
These observations imply that the HJ statistic is not a satisfying model selection tool.

The observations in Figure 1 show that values of the HJ statistic can not properly distinguish
between weakly identified models and misspecified models. This is what motivates us to look further

into the HJ specification test. Figure 2 compares two different approaches for approximating the
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Figure 1: Density functions of the HJ statistic: (1) black solid: three strong factors; (2)
black dashed: two strong factors; (3) black dotted: one strong factors; (4) blue solid: three
weak proxy factors; (5) red solid: three strong factors and one useless factor; (6) red dashed:
two strong factors and one useless factor; (7) red dotted: one strong factors and one useless
factor; (8) red dash-dotted:one strong factors and two useless factors

distribution of the HJ statistic: one uses the conventional weighted sum of x?’s, from which the
critical values of the HJ statistic result, and another one uses the infeasible distribution from
Theorem 2.2. The left-hand side panels of Figure 2 use three strong factors, while the right-hand
side panels use three week ones.

The upper panels of Figure 2 show that both approximations for the distribution of the HJ
statistic (the conventional weighted sum of x?(1)s and the infeasible one from Theorem 2.2) are
bad when T is small, and shift to the left compared with the density function of the HJ statistic.
This observation is consistent with the one in Ahn and Gadarowski (2004) that the HJ specification
test over-rejects correct model specifications in small samples. With a limited number of observation
periods, not only sampling errors in the g estimators need to be taken into account but also those
of other estimators such as the covariance estimator S (e.g. Kleibergen and Zhan (2019), Kleibergen
et al. (2018)). The infeasible distribution improves slightly by taking into account the sampling
errors in the gg estimators. When T is large, the randomness in the covariance estimators becomes
small, but the sampling errors in gg 7 still matter when proxy factors are weak. As shown in the
lower panels of Figure 2, with a larger sample size the conventional approximation works fine when

factors are strong but not when weak proxy factors are present. With weak proxy factors, the
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distribution of the HJ statistic is not properly approximated by the weighted sum of x?’s even
in large samples, and the HJ specification test is still likely to over-reject models when moment

conditions do hold (Corollary 2.2.2).

0 5 10 15 20 25 30 35 40 45 50 0

Figure 2: Density functions of the HJ statistic (red solid curve), weighted sum of x*’s
approximation (blue solid curves), asymptotic distribution based on Theory 2.2 (dot-dashed
curve). Top left-hand side panel: T' = 100, three strong factors f;; top right-hand side panel:
T = 100, three weak factors g;; bottom left-hand side panel: T'= 1000, three strong factors
f+; bottom right-hand side panel: 7" = 1000, three weak factors g;.

Our second simulation exercise considers a simple single factor model in order to further il-
lustrate the size distortion of the HJ specification test. We calibrated parameters to the data set
from Kroencke (2017). We simulate the proxy factor g; ~ 4d.i.d. N(0,Vy/4), the omitted factor
vp ~ dd.d. N0,V ff—dg*(Vy/4)xd}), the latent factor f; = dyg; +v; and thus the variance of the
f+ remain unchanged to different values of the d,. We calibrate V; to match the sample variance of
the consumption growth factor from the data. The factor proposed in Kroencke (2017) has been
shown to be weak (e.g. Kleibergen and Zhan (2019)). Therefore, we choose 3 to be of 103 with
,B\ the sample regression parameter from Kroencke (2017), and thus r; is generated with one single

strong factor f; viary = en + BA+ B fi +ur, up ~ i.i.d N(0,V,), where we match A to the estimated

15



risk premium from Kroencke (2017). We arbitrarily choose d; = 1.9;0.9 to mimic a strong and
weak proxy factor.

Table 1 shows that the HJ specification tests have poor finite sample performances, size dis-
tortions increase with the number of assets and with relative weak proxy factors the distortion is

more severe, and these observations support Corollary 2.2.2.

B N=5 N=10 N=15 N=31

T=100,d, =19 0.5032 0.8824 0.9711  0.9992
T=10000,d, =19 0.1210 0.1486  0.2298  0.2238

T=100, d, = 0.9 0.7132  0.9330 0.9814 1
T=10000,d, = 0.9 0.5174 0.8906  0.8834  0.9978

Table 1: Rejection frequency table under the null (at 0.05 significance level) via the HJ
specification test with critical values drawn from weighted sum of x?’s

3 Specification test with limited N: HJS

As in previous discussions, the HJ specification test can not provide valid inference when weak
(proxy) factors are present, and this is because the HJ specification test procedure ignores some
non-negligible sampling errors in the estimates of parameters that can not be properly identified
in the presence of weak identification issues. In this section, we suggest a numerically simple and
identification robust test procedure which replace the estimates of these parameters with potential
identification issues by those lying in a robust confidence set. This approach is related to the widely
studied weak instrument problem where confidence sets with asymptotically correct coverage can be
constructed for parameters with potential identification issues (e.g. Kleibergen (2005), Mikusheva

(2010)).

3.1 HJS specification test

Our proposed HJS specification test procedure is conducted in three steps:

Step (1): Construct an identification robust confidence set, C'S;. o, , for g by inverting an Anderson-
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Rubin (AR) type test statistic (e.g., Kleibergen (2009), Gospodinov et al. (2017)):

CSra, ={0€0©:AR(0) <ci—a,}; AR(9) = TeT(H)’S:Fl(G)eT(H). (13)

with ¢1_q, the 100(1 — a1)% percentile of the x2(N) distribution.

Step (2): Compute the HJS statistic:

=, @) 1

with 6,7 = (G)eg,T(Qg)'@;legyT(G(;). To complete the construction of the HJS statistic we set
25\; = oo when the confidence set C'S;, is empty.

Step (3): This test would then reject the null hypothesis that moment conditions (6) hold if
T6: > ¢_q»
and the critical value is:
Clq = SUp C]_q,(0), (15)

where ¢f__ (6) is the 100(1 — a1)% percentile of the weighted sum of N x?(1) random variables with
weights being the non-zero eigenvalues of ST% (0)@; 1S§(0), a1, ag are chosen such that a; > 0,
ag >0and (1 —a1) (1 — a2) =1 — a with « the overall significance level.

Our HJS specification test procedure combines a less powerful but robust statistic (AR) with
a non-robust one (HJ) to incorporate the model identification strength in our testing procedure,
and in later discussion we show that this test improves performance in size (compared with the HJ
test) and power (compared with the J test).

Before we proceed to show the size and power performances of the HJS specification test (Theory
3.2 and Theory 3.3 ), we first discuss the properties of the robust confidence set C'S, . Kleibergen
and Zhan (2019) study a similar robust risk premia confidence set using the GRS-FAR statistic.

They show that this kind of set can be unbounded in certain cases. Therefore, for practical reason
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we restrict the parameter space © to be a compact set (Assumption 2.1), of which the robust
confidence set is a subset. By construction, when the model is strongly identified we would expect
the confidence set to shrink to a point as sample size grows, and when the model is weakly identified

or even unidentified the diameter of this set can be arbitrarily large.

Lemma 3.1. Suppose the assumptions in Corollary 2.2.1 hold, then
limirjgf]P’(HG €CSn)>1—a

proof: See Appendix B.

Lemma 3.1 implies that the confidence set covers the true value with the requested probability
asymptotically even in the presence of weak (proxy) factors, which is essential for the correct size
performance of the HJS test. This result holds under more general cases, for example it holds even
when the model is not identified, and this correct coverage probability of the confidence set directly

results from the correct size of the identification robust AR test statistic.

Theorem 3.2. Suppose the assumptions in Lemma 3.1 hold,

lim sup P (TS\Z > c’lla) <a
T

proof: See Appendiz B.

Theorem 3.2 shows that ¢]_, provides a upper bound for the HJS statistic, which is also a upper
bound for the HJ statistic as the HJ statistic is smaller than the HJS statistic by construction, and
that the HJS specification test is size correct in the presence of weak (proxy) factors. The proof of it
implies that the size property of the HJS specification test is a direct result of Lemma 3.1, and given
that the lemma holds for more general conditions, we know that the HJS specification test can be
extended to more general cases as well. Theorem 3.2 also implies that the HJS specification test is
conservative, which is understandable as we use the infimum to construct the HJS statistic instead
of the supremum. However given the diameter of the robust confidence set can be arbitrarily large,

using the supremum can lead to size distortion (see Example B.1).
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Even though it is conservative, the HJS specification test has better power performance com-
pared with another well-know specification test, the J specification test. The J specification test

statistic is also constructed based on the AR statistic such that
J = i%f AR(0)

Gospodinov et al. (2017) show that the J specification test is size correct in the presence of
spurious/useless factors, which means ¢g is of reduced rank and the model is not identified, but
it has a complete power loss in such cases. We extend their results to weakly identified models.
Theory 3.3 shows that in both unidentified and weakly identified models, the J specification test

suffers from power loss, while our HJS test still maintains proper power performance.

Theorem 3.3. Suppose Assumptions B.1, 2.1, 2.2 hold, but instead of the correct proxy factors

gt, proxy factors g; are used such that g; is a Kx1 vector,

|LN — qéeéH >a > 0,V05 € © with
IG5 = E(rtég),ét = (1,9t) and the model is misspecified. In addition, assume that the ¥p,, when
we replace Gy with Gy, in Lemma 2.1 satisfies that Yp, ~ N(0,Qz ® %) with Q5 = E(été;) and

¥ the covariance matriz of ugs. Let H = (LN,Qé).

(i) (Gospodinov et al. (2017) Theorem 2, unidentified model under misspecification) Suppose H

has a column rank K + 1 —k for an integer k > 1, then we have
T =d Wi

where wy, ; is the smallest eigenvalue of Wy, ~ Wy (N — K — 1+ k, 1) and Wy, (N — K — 1+ k, 1)
denotes the Wishart distribution with N — K — 1+ k degrees of freedom and a scaling matriz

I.. Furthermore,

llm Sl,ll—,p]P) (j 2 CX%\I,KJ—Oé) S O[,

liminf P (T5; > cf_,) =1,
with 62 l-a the 1 — a quantile of X% _ -
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(ii) (weakly identified model under misspecification) Suppose (HQ) *(HQy) with Q, = diag(Ixy1—k, VTI})

converges to a positive definite matriz, then we have
J —rd Wi

where wy, ;; s the smallest eigenvalue of Wy, ~ Wy (1, N — K — 1+ k, It,) and Wy, (1, N — K — 1+ k, I,)
denotes the non-central Wishart distribution with N — K — 1 + k degrees of freedom and a

scaling matrixz Iy, a location parameter u (u is specified in the proof). Furthermore,

liminfP (7 > e | 1a) <1,

lim irTlfIP’ (Tg;‘ > c*{_a> =1,

with €2 l-a the 1 — a quantile of X% _ -

proof: See Appendiz B.

3.2 Simulation exercise

In this section, we conduct a simple simulation exercise with a single-factor model to evaluate
the empirical rejection rates (the size and power performance) of our proposed HJS specification
test. We calibrate the data generating process in our simulations to match the data set from
Kroencke (2017). We simulate the factor f; ~ i.i.d. N(0,Vy), where we set V; to match the
sample variance of the consumption growth factor. r; is generated with one factor f; via r, =
LN+ BA+Brd+ Bdg fr +ug, ug ~ i.i.d N(0,V,), where we match A to the estimated risk premium,
B is the sample slope parameter between the assets returns and consumption growth factor, and V,
is the sample covariance of the residuals resulting from regressing asset returns on a constant and
the consumption growth factor. 5, is a vector which is orthogonal to ¢y, 5 and H\/T I} lH =1. We
set T' = 100. We use d, to tune the identification strength of the factors in our simulation exercise
where a larger d, means a stronger factor, and d to tune the model misspecification level where a
lager d means a larger deviation from the moment conditions (6) for our simulated data.

For the size performance comparison, we set d = 0 and thus moment conditions (6) hold for
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our simulated data. Figure 3 shows that the HJ specification test is highly size distorted and the
distortion only drops down slightly when we increase the identification strength of the factor, while

the HJS specification test has a better finite sample behavior and remains size correct.

0.5 T T - T P T T 1
e \V../' x\____\ / . \l\_____
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045 1

Rejection rate
= = =
U T = U
(4] [3%] (4] [#4] (4] f=s
1 T T I 1
1 1 1 1 1

o
-
T
L

00D [ e e e e m

1 2 3 4 5 6 7 8 9
Identification strength (dg)

Figure 3: Size against strength of the factor (d,): rejection frequency of the HJ specification
test (red) and rejection frequency of the HJS specification test (black)

For the power performance comparison, we set d, = 0 which means f; only serves as a spurious
factor. Figure 4 shows that the rejection frequency of the HJS specification test increases much
faster compared with the one of the J specification test when the level of model misspecification
(d) increases. The rejection frequency of the J specification test remains relatively small even when
the HJS specification test rejection frequency is close to one, and this implies the HJS specification
test has better power performance.

These observations support our theory and show that the HJS specification test has good

performance in both size and power.
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Figure 4: Power against the level of the model misspecificaion (d): rejection frequency of
the HJ specification test (red), rejection frequency of the HJS specification test (black) and
rejection frequency of the J specification test (blue)

4 Specification testing with large N: HJN

In the previous section, we construct the HJS statistic using a robust confidence set of 6 since
it is only weakly identified with a limited number of asset returns. The HJS specification testing
procedure involves optimization steps, which is commonly done in practice through a grid search
procedure. In this section, we provide another novel valid specification test statistic, the HJN
statistic, which does not involve any time consuming optimization procedure. The construction of
the HJN statistic uses a consistent 8 estimator, and thus we first introduce our 64 estimator and

then the HJN statistic.

4.1 Four-pass estimator

When we work within a double-asymptotic framework such that both the number of time periods
and the number of asset returns grow, weak (proxy) factors do not necessarily lead to a weak

identification problem (Anatolyev and Mikusheva (2018)), which is similar to the case of many
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weak instruments that information about some parameters though limited aggregates slowly. Even
though 6A?G is not consistent (Theory B.2), another consistent estimator for g can be constructed.
With extended number of asset returns, we can estimate g consistently by removing the missing
factor structure via PCA and using an IV-type technique to correct for the remaining issues.
The consistent estimator gives another way to construct a statistic for the HJ distance, based on
which we propose a novel specification test statistic, our HJN statistic. In the following, we first
introduce our four-pass 6 estimator with extended number of asset returns, and thereafter provide
the motivation for this four-pass procedure.

We propose the following steps to estimate ¢ with N base portfolios of gross returns ry:
Step (1): Estimate ¢, Bg in the linear observed-(proxy)-factor model (4) via OLS with N base
portfolios of returns.

Step (2): Determine the omitted factor structure using the following two steps:

(2.1) Determine the number of factors, K, in ugs =r, — ¢ — ngt by

Ky, = arg 0<j<mKin (N_IT_I)\]- (ﬂgﬁlg) +jo(N, T)) -1

where \j(A) is the j-th largest eigenvalue of a given matrix A, uy is T'x N matrix stacked with the
OLS residuals %y ¢, Kyz max is an arbitrary upper bound for K, and ¢(N,T) is a penalty function
with the properties ¢(N,T) — 0, ¢(N, T)/(Nfé + Tfé) — oo (e.g., in later simulation exercise
and empirical application we simply choose ¢(N,T) = N —1 4 T‘i);

(2.2): Estimate the T' x N common component matrix cc = xb’ stacked with the common
components cc, c¢c = EEZ, such that Z is equal to /T times the eigenvector associated with the

~

IA(UZ largest eigenvalues of the matrix w4,

> and b =7 ug/T corresponds with the OLS estimator

regressing U, on Z:

(§,3> = arg min Z (ag,l-t — b;:pt)2

b;,xy s.t. Z?:l mtm{f/T:I}?m it

Step (3): Split the sample into two non-overlapping subsamples along the time index and remove
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the missing factor structure from the regressors in the SDF of both subsamples:

= g — i = 1,2

where

,_
N
.

T

1 1 1
qé)T—LTJZ G Q(G)T_T—m Z Gy
24 t=1 2 t:L%J+1
1Z)
3] _ 2 1 T .,
CCGT = Z Z cerGl; ccGr = m Z ce Gy
l2)i= t=T|+1

i) ~(1)

Step (4): We then use IV regression to derive two estimators, 19( ;1= 1,2, where we use g7 as

~(2)

instrument for g7, and vice versa. Thereafter, our proposed four-pass estimator is then derived

by taking average of both estimators:
b= 622
i=1
G _ (0 ) sy 72 _ (@ p )\ ey
with 0 (qG TP~<G2> q; T> e) TP~(2> iy and 057 = <qG TP 1) qc T) quTPQ(Gl)TLN'

Our estimation approach for 64 resolves the problems of the missing factor structure and the
weak (proxy) factors simultaneously. We make use of the results from Bai and Ng (2002), Bai
(2003) and Giglio and Xiu (2017) in step (2) to recover the common components in the error terms
using principal component analysis, and we use the instrument variable idea applied for the factor
models, which is used in Anatolyev and Mikusheva (2018), in step (4) to solve potential endogeneity
issues. Compared with the estimator proposed in Anatolyev and Mikusheva (2018), our proposed
estimator relaxes the restrictions on the number of omitted factors and the restrictions on the rank
of the loadings of all the factors present in the model.

To illustrate why our proposed procedure is robust against weak (proxy) factors and a missing

factor structure, we start by comparing it with the conventional 65 estimator. To do so, we first
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rewrite equation (6) (¢«n = Eqg rfg) as

LN = qa, 196 — €450a,

with €4, = (¢¢,7 — Eq¢,r) which is correlated with gg 7. The term €, vanishes asymptotically, and
so it is dominated by ggr when all proxy factors are strong. The conventional estimator, which
results from regressing ¢y on ggr, is then valid in large samples, since ¢, becomes negligible.
However, if some (proxy) factors are weak, some columns of g+ are of the same order as ¢, then
there would be a classic endogeneity problem if we simply regress ¢y on gg 7.

To solve the endogeneity problem, a valid instrument can be constructed in our framework
with a sample splitting technique and this idea is also employed in Anatolyev and Mikusheva

(2018). Given the independence of the e; from non-overlapping sub-samples, q(G1 )T can serve as an

instrument for q(G2 )T and vice versa when there is no missing factor structure (K,, = 0) and this is
the starting point of our proposed procedure. When there is a missing factor structure with factors

that might be correlated across time, qg )T is no longer a valid instrument for qg )T Therefore, we

~(1)

use qGi 7»% = 1,2 which results from removing the missing factor structure from qg)T,i =1,2. By
doing so, ?]8 )T is asymptotically uncorrelated with Effc), and is a valid instrument.
As shown in Theorem 4.1, our estimation procedure provides min{+/T’, v/N }-consistent results

for 6, of which a non-linear transformation leads to a consistent risk premia estimator (Corollary

4.1).

Theorem 4.1. Suppose Assumptions 2.1 - 2.3, C.1 - C.9 hold, and N/T — c.
VNTQ3! 1 (06— 6c) = 0p(1),

with Qp,r = diag(Ii1k,,,VTTik,,).”

Proof: See Appendix C.3 .

~ ~

2With some additional regular assumptions, we can construct igc such that Zéé 2 (99 — 00> —aq N(0,1).
See Appendix C.3.

25



Corollary 4.1.1. Suppose the assumptions in Theorem 4.1 hold, then
VNTQ,! <Xg - )‘g> — Op(1),
with Xg = —V,diag(Ox 1, IK)gg/gg’l. Proof: this is a direct result of Theorem j.1.

4.2 HJN specification test

Kleibergen and Zhan (2018) study risk premia on mimicking portfolios by projecting non-traded
factors on traded base portfolios, and then carry out identification robust tests using a set of testing
portfolios. We use a similar idea to construct the HJN specification test:

Step (1) Estimate 0 from a set of N base portfolios r, of asset returns using our proposed four-pass
estimator 5@

Step (2) Estimate gg from a set of testing portfolios R, of n asset returns and n is fixed such that
G = %311 RiG}

Step (3) The HIN statistic is

2 _ ~ A—l~
69 = 6TC?]{ er,

with sample pricing errors ep = ¢, — aggg, @R = % Z?zl R.R;.

Step (4) This test would reject the null hypothesis that moment conditions (6) hold if
ng > Elfa,

where ¢;_, is the 1 — a quantile of the weighted sum of N y?(1) random variables with weights
being the positive eigenvalues of the matrix S %(@R)*lg 3" with S a consistent estimator of the
long-run variance matrix of the sample pricing errors er r(6c) = tn — ¢aba-

Remark: the HJN specification test does not require the base portfolios and testing portfolios to

be non-overlapping.
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Corollary 4.1.2. Suppose the assumptions in Theorem 4.1 hold, then

n
T6; ~q Y piti
i=1

with x; being independently x*(1) distributed random variables and p; being the positive eigenval-

ues of the matrix S2 (Q\R)_lgél with S a consistent estimator of the long-run variance matrix of the

sample pricing errors er,g(0c) (for example, one may simple choose S = % Zthl eg7t7R(5g)eg,t7R(§G)’, egt,r(0g) =
v — RiGlo,).

Proof: See Appendix C.3.
Theorem 4.2 shows that our HJN specification test is size correct even with weak (proxy) factors.

Theorem 4.2. Suppose the assumptions in Theorem 4.1 hold,
limsup P (ng > Ac“lfa) =«
T

with ¢1_o the 1 — o quantile of the weighted sum of N x?(1) random wvariables with being the
positive eigenvalues of the matrix 5%(@3)_15’%/ with S a consistent estimator of the long-run
variance matriz of the sample pricing errors er r(6c) (for example, one may simple choose S =
Y eqnr(0c)eg i r(0c) g r(0g) = Ly — RiGify).

proof: This is a direct result from Corollary 4.1.2.

4.3 Simulation exercises and empirical applications

Similar to section 3.2, we again evaluate the empirical rejection rates of our HJS specification test
via simulation exercises.

We calibrate to the data set used in Anatolyev and Mikusheva (2018): the monthly returns on
100 Fama-French portfolios sorted by size and book-to-market and three Fama-French factors (g¢).
From the portfolio returns we obtain the first four principal components (PC), and we regard the
first three PCs as priced latent common factors, f;, and the fourth one as the omitted factor, z;.
With normalization (f, z)" (f,z) /T = I4, we set the variance of these factors to be 1. We regress

demeaned returns on f, z; for their risk exposures, and calculate the sample mean pg, and the
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sample variance Vg, of the risk exposures. We compute the sample variance o2Iy of the residuals
after regressing returns on f;, z;. To maintain the relation between observed factors g; and PCs
ft, we regress f; on the three Fama French factors to obtain the slope d; and residual covariance
matrix V,, and d, captures the quality of the proxy factors.

We then simulate our data in the following way. In the first step we simulate observed factors
from iid N(0,I3) and latent factors f; are generated by Adgg; + v; with v, simulated as i.i.d
N (0,(I — A)dyd,(I — A)+V,). Ais a diagonal matrix which we use to adjust the strengths of
our (proxy) factors, and we set A = diag(I3,d,) in our simulations with d, tuning the strength of
the simulated factors. As for the corresponding risk exposures, we use (3,7;) ~ i.i.d N(ugy, Vay).
Then in the end, we generate r; = ty + B1d+ BN+ Bfi + vz + e, ep ~ d.d.d N(0,021y), where we
match A to the estimated risk premia resulting from the data. 3, is a vector which is orthogonal
to vy, B and ||BL|| = 1. Similar to the previous simulation setting in Figure 4 we use d to tune the
model misspecification level and d = 0 when we simulate size curves.

In our simulations, we fix N = 100. For the HJN specification test we use all the simulate 100
asset gross returns to form the base portfolios and the first 25 to form the testing portfolios, and
we use the testing portfolios for the conventional HJ specification test.

Figure 5 compares the size curves of the HJ specification test and of the HJN specification test.
It shows that the HJ specification test is highly size distorted even when d,, is large (left hand side
panel of Figure 5) and the size distortion increases when proxy factors become weaker (smaller d,),
while the HJN specification test roughly remains size correct. Even with relatively large number
of time periods, the conventional HJ specification test still over-reject. Observations from Figure 5
also seem to imply that our HJN specification test tends to under-reject in finite samples, and to
show it performs well when the model is misspecified we also simulate power curves in Figure 6.

Figure 6 shows power curves of the HJ specification test and the HJN specification test respec-
tively. The left hand side panel of Figure 6 uses d, = 0.5 to mimic one weak proxy factor, while
all proxy factors in the right hand side panel are strong with a larger value of d,. Figure 6 shows
that the HJN specification test has proper power performance regardless of the presence of weak

(proxy) factors, and rejection frequency increases faster when the proxy factor is stronger.
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Figure 6: Power against the level of the model misspecificaion (d): rejection frequency of
the HJ specification test (red) and rejection frequency of the HJS specification test (black).
Left hand side panel: d, = 0.5; Right hand side panel: d, = +/10.

5 Empirical Application

We apply our proposed test procedures on the data set of monthly returns on 100 Fama-French
portfolios sorted by size and book-to-market and the three Fama-French factors (market, SmB,
HmL) and the momentum factor.

An intuitive measure for the factor structure in asset returns is total variation of the asset

returns explained by the principal components® (Kleibergen and Zhan (2015)). We construct the

3This corresponds with the nuclear norm of the demeaned asset returns
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spectral decomposition of the sample covariance matrix of the 100 portfolio returns, and denote
A1 > A2 > --- the characteristic roots (or eigenvalues of the PCs of asset returns) in descending
order. We use the characteristic roots ratios (CRRs) A;/ (Z j )\j) ,i = 1,2,3,4, which represent the
total variation of the portfolio returns explained by the first four PCs respectively, to check the
factor structure of portfolio returns (see Figures 7 and 8).

Figures 7 and 8 also report the p-values of specification tests (HJ and HJN) with respect to a
three-FF-factor model and a four-factor (adding the momentum) model from 1963-09 to 2019-08
using rolling windows of 240 and 120 months respectively®. For the HIN specification test we use all
the 100 asset returns to form the base portfolios and the first 25 to form the testing portfolios, and
we use the testing portfolios for the conventional HJ specification test. They also report measures
for the presence of a factor structure in the asset returns: the fraction of the total variation of the
portfolio returns that is explained by their principal components.

Figures 7 shows that when comparing nested models, the HJ test can produce counter-intuitive
results by rejecting a four-factor model but not the reduced three-factor model (see points near
the coordinate '2015-01"). This is an unfortunate outcome since the four-factor mode apparently
embeds the three-factor model and if the four-factor model is rejected we would expect the three-
factor model to be rejected as well. We attribute this strange behavior to the momentum factor
having only weak correlation with the returns and thus inducing a larger rejection rate of the HJ
test, while our HJN specification test does not have such problem.

The HJN specification test also captures changes in the factor structure of asset returns in a
more sensible way compared with the HJ test. As shown in Figure 7, when CRRs vary in different
time periods (e.g., the total variation of the portfolio returns is mostly explained by the first PC for
points near the coordinate '2000-01" while the other PCs only account for a much lower percentage
of the variation), the HJN specification tests reflect the changes in the factor structure of asset
returns with variations in p-values of tests of a four-factor model, while the HJ specification tests
reject both three-factor and four-factor models for most time periods and is not informative for the

factor structure of asset returns.

4We first choose the window size of 240 months in Figure 7, because our simulations suggest sample size
around 300 seems to be enough for carrying out our tests properly.
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Both of the HJ and the HJN tests in Figure 7 seem to have larger p values near the coordinate
’2015-01” while the patterns of characteristic roots ((a) and (b)) seem to be rather stable. This
is because a 240-month window size is a bit too long, and some changes in the factor structure
might be averaged out and thus not detected by CRRs. We choose a smaller rolling window size
(120 months) in Figure 8, and it shows the change in the factor structure (Figure 8.(a)) after
the coordinate '2010-01’. Similar to what we observe in Figure 7, Figure 8 also shows our HJN
specification test respond to the factor structure in the asset returns in a more informative way,
while the HJ tests only report small p values for most time periods for both three- and four-factor
models.

We observe in Figures 7 and 8 that the HJN specification tests in some rolling windows do not
reject a four-factor model. To further study this observation, Table 2 reports results based on the
data from 1977-08 to 2019-08. We see in Table 2 that both the HJ and HJN specification tests
reject the three-factor model, and while the HJ specification test rejects the four-factor model, the
HJN specification test does not reject it. Our HJS specification test seems to be a bit conservative
and does not reject both models in this application. The estimates for the four-factor model using
our proposed approach indicate a larger change in values corresponding to the momentum factor,
and this might result from the momentum factor being weak. Our specification tests support a
four-factor model for Fama French portfolios, and observations show that the momentum factor
might only serve as a weak proxy factor which can explain the difference between the HJ and the

HJN specification test results and the differences in estimated parameter values.

HJ(p-val) HJIN(p-val) HJS(rejected)

n=25
Three factor 0.000 0.000 No
Four factor 0.000 0.0694 No

Table 2: Tests of specification using monthly returns on 100 portfolios sorted by size and
book-to-market and the three Fama-French factors and the momentum factor from 1977-08
to 2019-08

31



6 Conclusions

We show that the HJ statistic is not a valid model selection tool and model specification test
statistic when weak (proxy) factors are present. We propose two novel approaches that provide
size-correct model specification tests, alongside with which we also propose novel weak (proxy)
factors robust risk premia estimators. Our empirical application supports a four factor structure

for Fama French portfolios despite that the momentum factor is a weak proxy factor.
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A Additional figures and tables

This section provides additional figures and tables. Mainly, we provide more results for our em-
pirical application in Section 5, and further illustrate how the conventional tests may fail in some
empirically relevant settings.

Figure 9 illustrates the density function of the HJS statistic under same settings as in Figure 1.
We use our previous simulation experiment calibrated to data from Lettau and Ludvigson (2001)
to illustrate properties of the HJS statistic. The black dotted curve in Figure 9 suggests the value
of the HJS statistic could be small when the model is not correctly specified. These smaller values
are due to much smaller confidence sets C'S, when model is not correctly specified. Therefore,
using the HJS statistic as a model selection tool may not be a good idea even though it provides
size correct specification test.

Figures 10 and 11 follow the same settings as in Figures 7 and 8, and they provide additional
results by adding the p-values of the rank test (Kleibergen and Paap (2006)) of gg (the rank of
gc reflects the identification strength of the model, e.g., Kleibergen and Zhan (2019), Kleibergen
et al. (2018), as it shows whether the sample pricing errors vary enough as a function of ), and
the p-values of the J specification test.

Figures 10 and 11 show that the J specification tests tend to give larger p-values, and thus it
is less informative. When we use 10-year window size (Figure 11) instead of the 20-year window
size (Figure 10), the p-values of the rank test increase and the lack of identification strength also
increases the p-values of the J test. For points near the coordinate '1990-01" in Figure 11, the
rank test can not reject that the gg is of reduced rank (lack of identification strength), and the
corresponding J-test p-values increase while the HJ tests tend to have larger p-values for testing
the reduced three-factor model than the four-factor model. In short, in the presence of weak (proxy)
factors, both well-know test statistics can not provide satisfying inference results.

Tables 4 and 3 follow the same settings as in Table 2 and reports additional results: tests with
different value of n and parameter estimates. If n is getting too large, the HJN test also suffers
from finite sample issues and tends to have smaller p-values, as its validity requires n/N — 0. We

leave the construction of a high-dimensional robust test statistic for further study.
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HJ(p-val) HJN(p-val) HJS(rejected)

n=30
Three factor 0.000 0.000 No
Four factor 0.000 0.054 No
n=35
Three factor 0.000 0.000 No
Four factor 0.000 0.027 No
n=40
Three factor 0.000 0.000 No
Four factor 0.000 0.026 No

Table 3: Tests of specification using monthly returns on 100 portfolios sorted by size and
book-to-market and the three Fama-French factors and the momentum factor from 1977-08
to 2019-08

Market SMB HML MOM

(1)

O 00480 -0.0013 -0.0127 -
O 0.3081 -0.1206 0.1370 -
Ag -5.2108 04037 -0.0347 -
A, -5.AT40 0.3250 -0.2261  —
(2)

Oc  0.0472 0.0174 -0.0172 0.0240

6 0.1146 -0.4108 0.2233 -0.8945
Ag  -3.7893  0.6822 -0.3995 1.5882
Ag  -2.8368 0.9104 -0.6567 3.6223

Table 4: Estimates with Fama-French factors and the momentum factor using monthly
returns on 100 portfolios sorted by size and book-to-market from 1977-08 to 2019-08
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Figure 9: Densities of the HJS statistic: (1) black solid: three strong factors; (2) black
dashed: two strong factors; (3) black dotted: one strong factors; (4) blue solid: three weak
proxy factors; (5) red solid: three strong factors and one useless factor; (6) red dashed: two
strong factors and one useless factor; (7) red dotted: one strong factors and one useless
factor; (8) red dash-dotted:one strong factors and two useless factors
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B Proofs related to sections 2 and 3

In appendix, we use \;(A) to denote the jth largest eigenvalue of a given matrix A, Amin(A), Amax(A4)
the minimum and the maximum eigenvalues. With A = (a;;), multiple matrix norms are denoted

as [[All = v Amax(A'A), [|Ally = max; 37, |aijl, [[All o = max; 3 |aij], [|All p = /tr(A"A), [[All pax =

maxm ]aij\.

Assumption B.1. The following asymptotic distributions hold jointly: (£g1,&gq.1, §vG. T, E6.1, ey ) —d

T T _ _ T
(£g7 §v, vaa €ZG7 geG’); where gg,T = % <Zt:1 gt — ,Ug) 5 ggg,T = % Zt:l gtgé, va,T = % Zt:l UtGiﬁang,T =
ﬁ Zthl %G, Cear = ﬁ Zthl e:Gh, and &g, vec(&ui), vee(Eaa), vec(€eq) are zero-mean normal

random vectors, &y is a Gaussian random matrix.

Assumption B.1 is a central limit theorem for the different components in equation (4) interacted
with a constant and the proxy factors. Some of the statements such as {7 —4 § would hold if
proxy factors are stationary with finite fourth moments and satisfy some strong mixing conditions
(see e.g. Peligrad et al. (2006)). We specify a relatively strong assumption here instead of dealing

with heavy technical details, but our results can be extended to general cases.

Proof of Lemma 2.1. Assumption 2.1 implies ry = ¢ + B4t + Bg (G — pg) + Svi + uy then

T T -1 T -1
B, =Y G (Z Gth> =" (c+ Bege + By (G — 1g) + B + uy) G (Z Gtag>
1=1 t=1 i=1 =1
1 1 ~_ 1 ~
= (Cv /Bg) + ﬁ (/Bgfg,Tv 0) + ﬁ (/67 7) fsz,Tle + ﬁgeG,TQal

The conclusion is then a direct result from Assumption B.1. O

Proof of Theorem 2.2. Assumption 2.1 and B.1 imply that

@r = Qr‘i‘Op(l/\/T) (16)

N = ByQcbc (17)
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Rewrite TSB as
~ / ~
\/T (LN — BQQGgg) W\/T (LN — BQQGeg> (18)
where

W= (Q," - @\;IEQQBQ,T(QBg,Tﬁé@r_lggQBg,T)_lQBg,Tég@r_l)

@B, r = diag <11+Kg,1, \/TIKM)
Lemma 2.1 and equation (17) imply that
VT (LN — EgQG9G> —q ing (19)
Lemma 2.1 and Assumption 2.3 imply the following equation holds jointly with equation (19)

EgQBg,T —d 1B, + (Oswﬂga) (20)

Plug equations (16)(19)(20) in equation (18), then we would derive the conclusion. O

Lemma B.1. Suppose Assumption B.1 and 2.1-2.3 hold, let N, T increase and then the restrictions
_1 _1
on ey from Assumption 2.2 (i)(ii)(iii) also hold for e, with e, = Q, *e; with Q, * = AA"2 A such

_1 .
that Q, = ANA" with A’A = I and we assume Q. ? is a row diagonally-dominant matriz’.

Proof. e;,t = 1,--- T are i.i.d. mean zero random vectors by construction. with finite fourth
moments by construction. Next we show sup; Eé}, is bounded. Assumption 2.1 implies Q, =

de+ VB + V.4 + Q. and thus we have the following results by eigenvalue inequalities (see e.g.

1
5In the proof of this lemma we need that @, 2 has bounded absolute row sum. This is not a wild
assumption if we consider the Gershgoring-type eigenvalue inclusion theorem and all eigenvalues of @, 1/2

are bounded.
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7.3.P16 of Horn et al. (2013)):

)\max (Qr) = )\max (C,C + ﬁvfﬁl + 7‘/27, + Qe) < )\max (C/C + ﬁvfﬁl + 7‘//7/) +L (21)

Amin (Qr) = Amin (C/C + /viﬁl + 7‘/;;7/ =+ Qe) > Amin (C/C + ﬁvfﬁl + ’YVZ’Y/) +i=1 (22)

Then by the assumption that @, 2 is a row diagonally-dominant matrix we know any row sums of
Qr 2 would be upper bounded by 2/71/2 and thus sup; ]Ee?t < L implies that sup; ngt is bounded.
Therefore, Assumption 2.2 (i) holds.

The term c'c + BVyf' + vV.7y' in Q, is a positive semi-definite matrix and we can rewrite
that term as Ag,Ag, Ap, such that Ag, is a diagonal matrix containing all positive eigenvalues of

e+ VB +7V.y and Ag, are the corresponding eigenvectors. Therefore, @, = Ag, Aq, Ag, + €2

and thus
Q' = 07t — 07 g, (Mg + 4,97 Aq, ) a0 (23)
which then implies that
tr (EQ;V?@@;Q;V?) JN =t (QQ7Y) /N =1—tr ((Aéi + A’QTQe—lAQT) _1) /N
From the fact that eigenvalues of Ag, explode by Assumption 2.3 and eigenvalues of €2, are bounded

~1
by Assumption 2.2 ; Courant-Fischer minimax principle implies tr ((AQi + A,Qr Qe_lAQr> ) /N —

0. Furthermore, Assumption 2.2 and 2.3 imply that lim inf x 7 Amin <Q;1/2) and lim sup 7 Amin ( ;1/2>

are bounded, and thus we also have

0 < [ < lim inf Amin (Q;l/QQeQ;I/Q) < lim sup Amax (Q;l/me) 0712 < I < .
N, T N,T

Therefore, Assumption 2.2 (ii) holds for ;. As for Assumption 2.2 (iii), inequalities for the trace
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of matrix product (e.g. Fang et al. (1994)) suggest

Amin (@1 1) tr (€r€}) = Amax (Q11) tr (E (eset))

<tr (Q;l (ere; — E (ere}))) < Amax (Q;l) tr (es€}) — Amin (Q;l) tr (E (ese}))

4

which implies that E‘ﬁ Zf\il (€it€is — Eéyéis)| < L < oo given all eigenvalues of Q, ! are

bounded. O

Theorem B.2 illustrates how the weak (proxy) factors can affect the asymptotic properties of
the estimator fg. This theorem resembles theorem one in Anatolyev and Mikusheva (2018), and
indeed we observe that the asymptotic behavior of the estimator 5@ is similar to the one of the

two-pass FM risk premia in Anatolyev and Mikusheva (2018).

Theorem B.2.

Case (1): Suppose Assumption B.1 and 2.1-2.3 hold, N is fized and T increases to infinity:
ﬁ@é:’T (@G@\G —0g) — biase — biasm) = 0p(1)

where

~ o~ i ~\1l A~~~ A
bias. = — (ByQ; ' By)  B4,.Q; ' By Qate
~, o~ ~\ —1 ~ 2PN ~ ~
biasn = — (ByQ;"By)  (By+ Bym) @r ' BymQate
1

. 1 PO . .
Bg,e = ﬁgeG,Tle; Bg,m \/T (ﬁa ’7) SUZG,TQGI; QBg,T = dlag (IlJrKg,la \/TIKg,z)
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and

VThbiase 1
VTQp! pbias, = | = WQB,EQ Qa0
biase 2
/
VT biasy, 1 Ik ~ _
\/TQginiasm = —q W 1+ §QB, n'Qr_lnﬁQGeG
biasy, 2 0
/ —1
Lk, ~ _ , Lk, ~ _
W=- n +&QB, | +eQp, | Q. | n +£&QB, | +€Qs,
0 0

Case (2): Suppose Assumption B.1 and 2.1-2.3 hold, let N, T increases to infinity N/T — ¢ and

Q, is a known row diagonally-dominant matriz such that n'Q'n/N — D:
VNTQ3! 1 (Qabc — bar) — bias. — biasy ) = Op(1)

where

1

b =06+ Qg (Byar'By) By <QG (@' -@5') - 7=

(Bg&q,T 0)> Qcbe

VTQp! +Qa (bar — 0c) = Op(1)

VThbias 1 ~
VTQg! pbias. = | =i WQp,EQcba
biase 2
/
VT biasm 1 Lk ~ e
VTQp! pbiasy = [ [N 7 “| +€Qs, | DEQGba
biasm, 2 0
/ —1
Ik ~ ~ | [ hi+x ~ ~
W=- ‘| +¢@s, | D 1 +&QB, | +QB,2:Q85,
0 0

Proof. Case (1): After simple algebra, we can express the term @G (@G — 0) — bias. — bias,, in the
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following way

@G <§G — 9) — bias. — bias,, = (E;Q\r_lﬁg) - {E;@r_l <qG (@51 - Qél) - \/1? (Bg&q,r, 0))

1 R r R r R
- < (ﬁggg,Ta 0) + Bg,e) Q;lBg,m - <Bg + (ngg,Ta O) + Bg,m) Q;lBg,e} QGGG (24)

1
VT VT
From the proofs of Lemma 2.1 and Theorem 2.2 we have

~ 1

By=By+ = (By€g.r0) + Bgm + Bye (25)
égQBg,T = (C +0,(1/VT), 77@,) + (1§T + 177€T> @B, (26)
vT vT !
0 0
where &7 = VT By = (dyQs,)"" 0 0:¢1Q5", er = VTBye = tearQg" &1 =4 & 1 —a
0 Ik

e, QBmT/\/T — Qp, = diag (01+Kg,1aIKg,2) and E, € are Gaussian random matrices. Equation (26)

implies that

Lk,

0

EQQBQ,T —d N + gQBg +eQp, (27)

With the above intermediate results, we prove our statement for the term bias. and the rests follow
the same steps. Assumption B.1 implies that the above asymptotic results hold jointly and thus
if we plug these into the equation below we would derive the asymptotic distribution of the term

bias,

ﬁQéijbiaSe = - ((EQQBQ7T),@;1(B\QQBQ7T)>_1 (B\g,eQBg,T)lér_l(\/Tég,e)@GeG (28)

Case (2): Next we discuss the case where N, T both grows to infinity. We first show the following
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two results:

(2.1) T&rQ,'er/N —, %, (29)
(2.2) VTEQ, /N =, 0 (30)

To prove the statement (2.1), let ¢, = Qr e; and p(s,t) = \/» Zz—l €.,€;s. By construction,
Ep*(s,t) = +tr () < A2

max

(%) with Qs = Ee&;é} and thus Lemma B.1 implies that Ep?(s,t)
is bounded. Assumption 2.1 (finite fourth moments of proxy factors), Assumption 2.2 (i) and the

bounded Ep?(s,t) deliver the following inequality

1 N T T 2
E| —— Z Z Z GtmGsnatgis
T\/N i=1 \ t=1 s#t
1 [ 1
— /
=K T ZZGtmGsnP(S’t) ZZGt/ Gonp(s',t)
t=1 st t'=1s'#t
T T
) ? > (GG + GimGeanGemGun) p°(s,t) | | < L (31)
t=1 s#t
which via Chebyshev’s inequality gives
N
7 Z Z Z GG, s€ @tgzs = OP(l) (32)
i=1 \ t=1 s#t

Finally we arrive at (2.1):

T
T&Qrer/N = Qy' <§T 2 G@ééﬂ@) Q'+ 0p(1/VN) =S+ O,(1/VN)  (33)
t=1

where the first equality is due to equation (32) and the last equality is guaranteed by Lemma B.1.
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Next, we prove the statement (2.2). We first look at the second moments

2 T T /
1 ~=1/2. 1 /N 1 } : 2 0=1/2, 71/
E <E|tr (\/T t§:1 Gteth 17/ N) <\/T v Gteth 77/ N>

1 d ' —1
7T ; Gee;Qy 'n/VN

| il /)

1 T
== tr (E (G o' Q7 ?6Gy) /N ) < Lix (9:Q, 0/ Q72 /N ) < Lamax (22)
£3 o (& (Git0r /@ i) ) < e (0.0 ;)

where the first inequality is because factors g; have finite fourth moments. The proof of Lemma B.1

2
shows that Amax (€2z) and ‘Q; Y 2H1 are bounded, Assumption 2.3 implies that [|7]|% /N is bounded.

Therefore, we know

2

E | <L<oo (34)

1 T
— Y Gie,Q; 'n/VN

and thus (2.2) holds since VTe.Q; 'n/N = \/17NQ971 (ﬁ ST Gte;len/\/N) = 0,(1/V/'N). In
the end, 7’Q;'n/N — D and the result (2.2) imply the following term is of order Op(1) when
N/T — ¢

VT 1 1\ 1~ 1 1=\ ., 1 _
ﬁQBg,T {— (\/T (Bg€g1,0) + \/T6T> Q, lﬁfT - (Bg + ﬁ (Bg€g1,0) + ﬁ§T> Q, 1ﬁ€T} = 0p(1)
O

Assumption B.2. Let ey:(0c) = tn — 1:Giba, and the restrictions on e; from Assumption 2.2

(1) (i) (i) also hold for eq4(0c).

Proof of Corollary 2.2.2. Theorem 2.2 suggest for given IV, TZSZ —q di,ny withdy ny = {%%M i ) {EBQ,
Qr 2 <7IBQ+(0:'¢}BQ,2)>
JBQ ~ N(0,Sp,) and Sp, = plimSp, ,SB, T = %E;‘le egt(0c)eg(0c)’. From the construction

of the ¢1_q, we know it is drawn from the distribution of the dy v = ¢gM L ] Pg
Q2 <’73g+(03¢69,2)>

with ¢¥g ~ N(0,S),S = plim §, S = % Zle eg’t(é\g)eg’t(é\g)’,gg,t =y — rthﬁG and 1)g indepen-

dent from ¢ p,. The proof of Theorem B.2 suggest that JquP L JBQ = 0p(1) for

Q2 <nsg+(03w5g,2)>

any given N, and the same for the term P | )qbs. Now we look at the difference

Qr? (WBng(OEwﬁg,g)
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S, — St.

S0t 2 (rh (B 06)) (i (A — 06))

T
(64 (36— 06) ) ey — 23" ey (Gt (8 - 06)) (39

t=1 t=1

Assumption B.2 and proofs of Theorem B.2 then suggest the last two terms be negligible in large
~ o~ !/
samples, and thus for fixed N when T is large St ~ SBQ,T—&—% Z;f:l (rtGQ (0@ - 60>> (rtGQ (0@ - 90>> :

This then lead to the conclusion. O

Proof of Lemma 3.1. Assumption B.2 implies that for g, AR(0g) —4 x2(IN) which then implies

the result. O

Proof of Theorem 3.2. Notice if g € CS, 4, then Tg; < Teyr(06)Qr egr(0c) and c1_q,(0c) <

¢}_qo- Assumption B.2 implies in large samples
lim inf P (Tegr(0c) @t egr(0c) < ci—ay(06)) =1 — as

The Lemma 3.1 and (1 — a1)(1 — ag) = 1 — « lead to conclusion. O

Proof of Theorem 3.3. We first provide the proof related with the J statistic, which essentially
results from the proof of Theorem 2 in Gospodinov et al. (2017).

Denote W = TL’E;PI (Pjxp)! P{EQL, where P is an N x (N — 1) orthogonal matrix whose
columns are orthogonal to ¢ty such that PP, = Ixy_1,PPP — 1" = M,,; L is an lower triangular
matrix such that Q5 = LL’ and ¥ is the covariance matrix. Define Z = (PIx=Py)~Y/ QP{EQL and

M = (P{%P;)"'/2P|B,L, and then
VTvec(Z — M) —q N(0,I(x_1)x)

From the assumption on H, we know there exists K x k and K x K —k matrices C1, Cy where (C1, C3)

is a K x K orthogonal matrix and M; = MCy, My = MCs are of orders O(1/v/T),0(1) respectively.
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Let vTM; — [i, then in case (1) i = 0 and in case (2) fiis bounded. Let Z = (Z1, Zo) = (ZCy, ZCh)
we would have
vec (Zl) vec (1)

—a N s Iiv-nk

VT R
vec <22 _ Mg) 0

The proof of theorem 2 in Gospodinov et al. (2017) shows that: (i) the asymptotic distribution of

the J statistic is the same as the one of the largest eigenvalue, wy, of W1 with
W =TZMy, 7, (36)
and thus (i) in case (1) where H is of reduced rank and i = 0, W —¢ Wy (N — K — 1+ k, I,) and
P(wp <a) <P <a), Tk~ Xu_k

In case (2), where i # 0, W follows a non-central Wishart distribution W, (N—K—-1+k, I, p)
with p = g/ MM’QZZ, |lull < L < oo asymptotically, which then implies the inconsistency of the J
test. The consistency of the HJS test is obvious since HLN — qéGéH >a > 0,Y05 € © implies that
v = ag 205 = 0s(VT). Vo < ©.

O

Example B.1. We use an specific example, where we suppose Assumptions 2.1, - 2.3 hold with
Qs =E(GiGY), K > Ky > 1, to show that over the supreme, T supgecs, o dg1(8), is not properly

bounded by cj_,, in the sense that there would be o > 0 such that

We prove this by discussing elements in the confidence set. We group 0s in CS, o, into two classes:
(1) 0s with entries corresponding to strong proxy factors deviating from their true values; (2)
0s with entries corresponding to weak proxy factors deviating from their true values. Notice for
any Os belong to class (1), Té,7(0) is of order Oy(T), while for Os belong to class (2) we have
To,7(0) = Tdy1(0c) + Op(1), and Sr(0) = S7(0c) + O,(1/VT).
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Now we only need to show that the confidence set in the presence of weak proxy factors contains
some Os in class-(2) with positive probability &y > 1 > 0 in large samples, which then leads to the
conclusion. The proof of Theorem 1 in Gospodinov et al. (2017) implies that

(¢ Sr(0) " (e — gart))’ 1

7 57(0) Loy +On(7)

JO)=CD(0)+T
where CD(0) = T0'qq 1 Py ((«9’ ®P))V (ﬁvec(qcyT)) (0 ® P1)> Plqcr0. Notice infg CD(0) is a

rank test (Kleibergen and Paap (2006)), and in the presence of weak factors CD (0g + (Okxx1,1))

converges to a non-central chi-square distribution which would then implies our claim.
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C Consistent 0 estimator

Proofs related to section 4 relies heavily on the properties of our four-pass estimator, and thus we
first discuss our four-pass estimator before we provide proofs. This section contains the following
results: (1) we first show that the number of the strong factors can be estimated consistently; (2)
we then show common component can be estimated consistently when N /T — 0; (3) we show
that with proxies for the common component, 6 can be consistently derived even in the presence of

weak identification issues via our proposed estimator and we also derive its asymptotic distribution.

Assumption C.1. [[(8;7)ill = llcgyill < L. Q) = A}Lrnoo(ﬂ;*y)’(ﬁ;'y)/N with Q gy a Kyz X Ky,
positive definite matriz with 0 <1 < Ak, (Q(ﬁ;v)) <X\ (Q(BQ’Y)) < L < 00. (Assumption 2.3 implies

this assumption via the Ostrowski theorem and some extra mild assumptions on Q,.) such that

HN_lc/ﬁwcﬁv - QMH = 0p(1)

Assumption C.2. Let yy(t,t') = E (Nfl ZZ]L eiteit/>, there exists a positive constant L such

that

T T
—1 / < T / <

t=1¢'=1
T T N N 2 T T N 2
@ry Y E (z cucis —E (z )) 2y y (s (z ) - N ()| <IN
t=1¢'=1 i=1 i=1 t=1¢'=1 i=1
Assumption C.2 is implies by Assumption 2.2.
. 1 N 4
Assumption C.3. E ‘W Yoy (eireis — Eejreis)| < L < o0

Assumption C.4. This is implied by Assumptions 2.1 and 2.2 (Weak dependence between prozy
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factors and Idiosyncratic Errors from Bai and Ng (2002))

2
<L

1N
BV

\F Z gt€it

2

K| { T
z; T ; GtUuz it <L
| X T 2
(7i7) — Z Uypz,tCit <L
Nz t:l
Assumption C.5. For all N and T,
N 2
E Z (Z Cﬂ%ijeit> S LNT
t=1 \i=1
N 2
E (Z > cﬂ%ijeit> < LNT (37)
t=1 i=1
Assumption C.6.
1
HT_lu;Zu”Z - ZU""Hmax = OP(T_E)

with Xy, a positive definite matriz.

Assumption C.7.
St:p]E ||uvz,tH4 <L

This is one assumption identical to one imposed on factors (Assumption A) in Bai and Ng (2002)
and Anatolyev and Mikusheva (2018) impose slightly stronger assumption.
Assumption C.8.

T

WS (s, ) < L

t

N
Z)Z'T“’j)' <L

%)



with Eeitejt - Tt(ivj)a ’Tt(lv.])‘ S ’T(Zvj)|

Assumption C.9. (i)

1 T N 2
— K Z Z Uyz,s (eiseit - E(eiseit)) <L

s=1n=1

(ii) for each t, as N — oo

Z cgyi€ti —a N (0,11;)
f =1

. . 1 N N s
with II; = 1\}51100 N Dic1 ijl clg%ic'ﬁ,mEetietj. And for allj=1,--- N

T
Zcﬁv i \€ti€tj — Eetzetj) OP(l)
1t=1

}ﬂ
M) =

1
N

-.
I

(iii)
2
<M

T N

/
E g Upz,tCB~ i Cit
t=1 i=1

T

Assumption C.9 is identical to the Assumption F in Bai (2003).

c1 (1)

In this section we prove that we can estimate the number of the strong factors in the ug4 ¢ consistently.

Here we only provide one way to estimate the number, the estimation approach is not unique. Bai

and Ng (2002) propose multiple consistent estimators for the number of strong factors with different

penalty functions. Here we use the one employed in Giglio and Xiu (2017).

Under Assumption 2.1, we know

Ty =c+ BdgGr + ugy

with ug; = Bvy + vz + e, ¢ = ¢ + Bdg(g — pg). v¢ is assumed to be of a K, x 1 vector, but the
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dimension of z; is unknown. We estimate the number K, of the omitted strong factors by

K, = arg <j13}§1 (NN (Gga)) + jo(N,T)) — 1 (39)
g>J] >N vz,max

where 1, is T'x N matrix stacked with the residuals 2y ;, Kp2 max is an arbitrary upper bound for K,
and ¢(N,T) is a penalty function with the properties ¢(N,T) — 0, ¢(N, T)/(N_% + T_%) — 00.

Now we show this estimator is consistent.

Theorem C.1. Suppose Assumptions 2.1, C.1 - C.6 hold, let N, T increase then
-[?vz _>p sz

Proof. We basically follow the steps in Giglio and Xiu (2017) with small changes in the middle.

(1) We first prove the claim such that for 1 < j < K,

NI

INTITU () = A (Qa)? Zn (Quain))? ) | = 0(1) (40)

ith o = i ) (B:7v)/N.

with Qsyy) = lim (857)'(6;7)/
For convenience, in this proof, denote cg, = (3;7), uv> = (v; 2).
(1.1) Notice

~ ~/ / / _ _ / / _ _ / _ _ / _
UgUy — MatyzCayCayty, Me = Mauy.cg e Mg + Maecgyu,, M + Mgee' M,

with 1y = Mgr. We show in the following steps that the three terms on the right is negligible when
divided by NT.

For the term Mgzee Mg, we have

HM@@B'M@ — nFuH < Hee/ — nFuHF +2 HP@@@’HF + HP@ee/PGHF (41)
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Assumption C.2.(1) implies that

N T
B3 ~EY 3" ¢l < LNT

=1 t=1

N T T
Elel7=T"E> Y Y enew = NT? Z ZWN (t,t')| < LNT™!
i=1 t=1t'=1 t=11t'=
Assumption C.2.(2) implies that
N 2
E Hee’ — nFUHF Z ZE <Z eiteiy — E (Z eiteit/>> < LNT?
i=1

t=1t'=

Assumption C.4 implies that

N T 2
2 1 1
E||G'e||, = NTE (Nz; ﬁ;Gm ) < LNT
- = '
|Gell, = Op(NAT); (0,00 e]| = Op(N3T?)

[&el < el + | (0.r) |, = O )

N
~—

|Peellp < T7H|G| | (@G/m) 7| l1Ge] = Opv
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Then it follows that

[ Mgee M — | <lee’ ~ Tl + 2| Peed| . + || Poec'Pol

—0,(N2T) 4+ O,(NT?2) + Op(N) (49)
From assumption C.4 (1) we would have

T T
E|Tulz=E) Y lw(tt) < LT (50)
t=1t¢'=1
[ Mgee' Mg| p < ||Mgee' Mg — Ty + [InDul| » = Op(N2T) + O,(NT?)
For the term Mgu,.cjy, €' Mg, we have

HMC?UUZCIMGIM@HF < HuvzclﬁveluF + HP@uvzc’me'HF + HUUZC%WGIP@HF + HP@“UZC/MQ/P@HF

< @Ky + 1)) sy 51

Assumption C.5 implies that

Ky. T [/ N 2
Ellecs, |7 =EY > (Z Cﬂv,ijeit> < LNT (52)

j=1t=1 \i=1
Thus
Jwzll € KT (|77 00|y = Op(T7) (53)
Javslyye’| < el o’ | 5 = Op(N2T) (54)
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| Metupac e Mg|| < Op(N3T)
Therefore
N_IT_I‘)‘j(agafq) - Aj(Méuvchiwcﬂvu;zMéﬂ = op(1)
(1.2) To finish the proof of part (1) we only need to show the following two results:

(1'2'1) ’N_IT_I)‘]'(MG_’UUZC,/BWCQWU{U,ZMG_’) - T_l)‘j(MéuszB”/u;)zMG” = Op(l)

_ 1 1
(1.2.2) [T 1)‘]'(MC_}UUZQ,3’YULZMG) — A ((Q(ﬁ,'y)) 2 E(v;z) (Q(ﬁﬁ)) 2 ) | = Op(l)
The equation 57 is a direct result of Assumption C.1 and Weyl’s inequality such that

[N (Mguosc cayin. Ma) — T (MguusQgyun,, Mg )|

<r HNﬁlC/chﬂv - QBWH ”MGUWH2 = 0p(1)

The equation 57 is a direct result of Assumption C.6 and Weyl’s inequality such that

N

_ 1
TN (M2 Qe Mg) = i ((Q(ay) T (@) )|

<L | Tt — s = Op(T7)

Therefore, for 1 < j < K,

[un

1 r— ~ 1 1
NN (@) = 4 ((Qa)? B (Qusny)? ) | = 0p(1)

(2) In part (2) we finish the proof of the consistency Ky» by showing the following statement

lim _inf ]P’(ﬁ(Kerl) <F(G),j=1,-- ,N) —1
T,N—o0
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with F(j) = NIT=1)j (@guy) + j¢(N, T). Notice a direct result from step (1) is that for 1 < j <

K, ., we can find [ > 0 such that ﬁ(j) > 1+ 0,(1), while for K,, +1 < j, F(j) = op(1). Then we
only need to show that for j > K,, + 1, ﬁ(]) > ﬁ(KUZ + 1) with probability approaching to one.

Notice for j > K, + 1,
A (@y@l)) < ||e¢’|| = Op(TN"2 + T~ 2N) (63)

and this implies 13(]) > ﬁ(KUZ + 1) with probability approaching to one as (N%T%)(j — Ky, —

1)¢(N,T) > (Nf%Tfé) (k.11 (@gty) — s (yuy,)) with probability approaching to one.

C.2 (2)
Denote myp = min{N, T'}.

Lemma C.2. Suppose Assumptions 2.1 - 2.2, C.1 - C.6 hold, let N,T increase then
1 <& 2
v 3 e = v} = 0,0

with H = (C%,YCE,Y/N) (ul Uy, /T) Viyr and Vnr being the K, x K, diagonal matriz of A; (agﬂ;/NT) 1=
17 T aK’Uz'

Proof. This proof resembles the proof of Theorem 1 in Bai and Ng (2002). From the normalization

o~
U, Uy, /T = Ik, we know

T
~ 2 ~ 2
sl = Y sl = Op(T) (64)
t=1
From the proof in section and the above equation we know

VH |y < ||grep /N | lathstton /T2 |Tnion /T 1 = O(1) (65)
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From the equation (80) and (40), we know

6
Havz,t - Hluvz,tHi‘ <L Z az?,t
=1

with

a% t :T72 Z avz,s'}’N(Su t)

2

2 —2 ~
a9 ¢ =T g uvz,sCee,st

(S|

T
2 -2 ~
a3,t =T Z uvz,sgue,st

N oy

2 —2 ~
Ay =T E uvz,sCeu,st

2

1
a%,t = H NT UZPGug
1
a%,t 'NT UZ

2

Meug (gt — ug,t)
F

From the equation (64) and Assumption C.2 (i),
T T T
Zalt (T_IZHUUZ SHF> < ZZ’YN(S’t)Q) = 0Op(1)
t=1 s

=1

From the equation (64) and Assumption 2.2,

T T T T 2\ 3
> ad, < (leumz,sﬁ) TQZZ<ZCW<W> = 0,(T/N)

t=1 s=1 t=1 s=1

and from the equation (52)

T

T T T
Y a3, < (Z Hc’met/N\@) (T‘l > Haw,su;> (T‘l > ||uvz,s||%> = 0,(T/N)
t=1 t=1 s=1 s=1

and similarly Zthl ait < Op(T/N).
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From Assumption 2.2,
|Patglle < TG | (GG/T) | 1G gl = Op(3) (71)

and thus

T

T T
S, < (T—l 5 navz,sn;) (N 1Psul) (N—IT—IZ nug,tu;> 0,0 @)
t=1 s=1 t=1

From the equation (40) and (63)

1Mepug|l = Op(NT) (73)
and since vT (Bg - 59) = 0,(1)
T 5 JT (3 2 = JT 2 _
> Vae = uaelly < [VT (B =) |V < 00 ™
Therefore,
T T T
Soat, < (T-lznam,su%> (N1 | Mg 1) (N*Znag,t —ug,tué> <0,(1) (1)
t=1 s=1 t=1
It follows
1 T " , 2
TZ [Tzt — H'toz || = Op(1/N) + Oy (1/T) (76)
t=1
O

Given the discussion in the last subsection, it would be safe to assume that we know the value
of K,,, namely the number of the strong omitted factors are known. In this section, we show the
asymptotic properties of the common component estimator. Essentially, this section is a building

block for the consistent ¢, estimator as introduced in the next section.
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The method of principal components method gives the following estimators

-~ - : ~ 2
(Cgry,y Uyz) = arg min Ugit — Chuy (77)
By vz S 23;1 utu;/T:Isz %: ( g,? ) )
The estimator @, is equal to the v/T times eigenvector associated with the K, largest eigenvalues

of the matrix u,u;,, and ¢g, = U uy/T corresponds to the OLS estimator regressing u, over ,z.

g7
Specially we are interested in the common component estimator ¢ = ,.(¢g,)’, which would serve

as a proxy for the common component in u, in our proposed estimator.

Theorem C.3. Suppose Assumptions 2.1 - 2.2, C.1 - C.6, C.7, C.9 hold, and \/N/T — 0,

T
~ 1
\/N (Uvz,t - Hluvz,t) = N%T SZ:; (Uvz su;;z s \/> ; CBy,i€it + Op(l) (78)
when liminf /N /T — 7 > 0,
T (ﬂm,t — H,uvz7t) = Op(l) (79)

Proof. We make use the equation @, = ﬁM@ugu;M@ﬂsz]ﬁlﬂ, and H = (C/fwcﬁ'y/N> (W2 /T) Vs

and V7 is the K, x K, diagonal matrix of \; (ﬂgﬂ;/NT) ,i=1,---,K,,. Then

Uyz gt H/uvz,t
NTVNT (MG“g“gt Uyz (Clﬂvcﬁv) “vz,t)

1 ~ ~
“NT VNil“ufuz (ug“gt Uyz (Clﬁvcﬁv) Upzt — Pougugr + Meug (g — “g,t))

1 . A
ZWVN%u;z ((Uvzclﬁy + e) (CByUpzt + €t) — Upz (C,/bwc,@w) Uzt — Pougugr + Meug (g — ug,t))

T
_ 1 -
:VN'JI“ (T Z Uvz,s'YN(S t Z Uyy sCee st T = Z Uyz sCue st T = Z Uyz sCeu st)
s=1

_ 1 _ 1
+ VNII“ (‘Mﬂuijzpcug“g,t + NT szGug (Ugt — Ug, t)> (80)
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with

Cee,st :elset/N - 'YN(Sa t) (81)
Cue,st :ui;z,sc,/é’yet/N (82)
Ceu,st :u;;z,tCQR7€S/N (83)

Now we analyze the terms on the left hand of equation (80).

(1) Assumption C.7 and Assumption C.2 imply that

T
=D s (s 1) = Op(1/T) (84)
s=1

Lemma C.2 and Assumption C.2 imply that

1 1 T 1/2 T 1/2
> = | 7 Z ”avz,s - uvz,s”?ﬁ) (Z |7N(57 t)|2>
\/T (T s=1 t

T
Z uvz ] — Uyz ,S ’YN(S t)

= F
=0,(1/(vTmnr)) (85)
and thus
1 T
= Zuvz s’YN S, t Z Uyz S'YN S, t + T Z (Hvz,s - uvz,s) 'YN(Sa t) < Op(l/( \V TmNT)) (86)
s=1
(2)
Assumption C.9 implies that
1 T
T Zuvz,sCee,st = Op(l/ v NT) (87)
s=1

Assumption 2.2 implies

T

1 & 11
2 P . .
T ;:1 ’Cee,st| —TN 5521 ﬁ (stezt

1 2
— E(eiseir))| = Op(1/(N)) (88)
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Lemma C.2 and equation (88) imply that

1/2 L 1/2
2 4 2

T
5 uvz s — Uyz,s Cee st

1
< (T Sz:; Huvz,s -
:Op(l/(\/WNT))

and thus

T T T
1 ~ 1 1 N
T ; ’sz,sCee,st :T Sz:l Ufuz,sgee,st + f SE:I (Uvz,s - Uvz,s) Cee,st < Op(l/(\/m»

(3) Assumption C.9 implies that

1 s 1 (1 &
T Uyz,sQue,st = | 7 Uyz su;z s| —7— | (7= cpyieti | = Op(1 N
Ts§1 5Cue,st (T Zsl Uy, ) ~ ( ~ ;:1: 8y, t) p(1/VN)

and

T T

1 2 1 2

3 et =5 D7 (W aont/N)? < o /T [yl VN /N = 0,(1/N)
s=1 s=1

Lemma C.2 and equation (92) imply that

1/2 . T 1/2
2) (th: Cue,st’2>

T
§ Uyz s — Uyz,s Cue st
=1

1 T
S (T SZI Havz,s -
=0p(1/(v/ Nmnr))

and thus

1 _ 1 1 N
f ; ’Lva,sgue,st :f Sz_; Uvz,sCue,st + T Sz_; (Uvz,s - Uvz,s) Cue,st = Op(l/\/ﬁ)
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(4) Lemma C.2 and Assumption C.9 imply that

1 1
T 2 T 2
1 1 - 2 1 / 2
e Zuuwys—umysru) ( chesn V| ) [
N (T s=1 T s=1 F

=0,(1/v/Nmnr) (95)

T

~ / <
) ) S ) —
g (Upzs — Upzs) € 057/Nuvzt
s=1 F

1
T

Assumption C.9 implies

T

1 1 1

UNT ( UNT 2 ﬁ) G (6
s=1

and thus

T T

1 ~

T Zuvz,SCue,st = Z uvz s — Uyz, s € C,B'y/Nuvzt + 5 Zuvz s€s C,B'y/Nuvzt < O 1/ VN NT
s=1 s=1

(97)
(5) Similar to the derivation of equation (47)
|G g = Op(N2T2): |G| = Op(T'2) (98)
which implies
7 || oz = i)' G (é'@)-l gy
( > s - uvthF> = (et @em | ) (g 6l [uva),

:Op(l/\/TmNT) (99)
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and

% [.c(@G) ™ Cruguty |
1 N 1 -
< o= Gl ) 7 (|G ED) 7| ) (A 167l ) g/ VN
JT T r) \UNT F
=0,(1/T) (100)
Therefore
L Paugd, = (@ — ) G (GG) ™ Clugt,, + .G (GG Gugt!
NT vzt GY9 gt_NT vz vz g gt NT vz 9%g,t
SOp(l/\/TmNT) (101)
(6)
1 \/TC//B (@ t—Uu ,t) 1
NT [t 0=l (gt — g o < —\/7 |tttz /T| 5 : \/‘% : i = Op(ﬁ) (102)
. 1 VT (g — 1
o7 e (g = g o < o ||/ VAT H (“yﬁ te)| Op(z)  (103)

and thus

1 N 1 - . 1
NT H MGugHF NT Hu;zug (ug,t - ug,t)”p + NT Hugzpéug (ug,t - “g,t)HF = Op(ﬁ) + Op(*

(104)

From the above discussion, when v N /T — 0, only the third term in equation 80 matters in

the asymptotic behavior and thus

T

Z (UUZ sUyz, s \/* Z CBy,i€it + Op(]-) (105)

s=1

\/N (ﬂvz,t - H,uvz,t) = VNTT
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when liminf /N /T — 7 > 0, it is straightforward that

T (Upzy — H'tyzp) = Op(1) (106)

Theorem C.4. Suppose Assumptions 2.1 - 2.2, C.1 - C.9 hold, and \/T/N —0

- _ 1
VT (€pyi — H 'epyi) = H/ﬁu;)zei +0p(1)

Proof.
~ 1., .
66’711 :Tuvzugﬂ'

RS UV

_Tuvz ((uUZH + Uyy — Uy H ) CBy,i + el) — TUUZ (Ug,i — ugy)

1 1 1
-1 ~ -1 ~ ~
=H “cpy;+ fH'u;Zei + = T Uy (uvz Uy H ) Cy,i T T (ué)z — H'ufvz) e; — T u, (Ug,i — ugs)
(107)

We show the last three terms are at most O,(1/my7).

(1) For the term + (uy. — uy.H)' e;, equation (80) implies

T T T T T T
1 _ 1 - 1 - 1
L s = w1 = Vi (T )3) SNSNIT AR 9 WA IESLY ) )

t=1 s=1 t=1 s=1

T T
_ 1 1
+ VN% (T Z Z Uyz sCeu st€it — NT2 Z uszGugug teit + =y NT2 Z uszGug (ugt Ug, t) 6115)

t=1

6
VY, (108)

j=1

There are six terms on the left hand side of the above equation, and we analyze each of a;,j =

1,---,6 to determine the order of % (Tyz — up. H) €.
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Assumption 2.2 and Lemma 1(i) in Bai and Ng (2002) imply that

LT L rr
E |z > >t (s ei| <o >3
t=1 s=1 F t=1 s=1
Therefore,

1

T2

T T T
ZZ Upz,s — H'tz s) Y (s, t)eir + — T2 Z

t=1 s=1 t=1

Assumption 2.2 implies that

Equation (1

t=1 s=1

T

1 & 1 1 1 &
— g e = —— — g R g €;cCit — B,
T i Cee,st it \/NT gt (\/ﬁ i:1( 1sCat

12) and Lemma C.2 imply that

/
Uyz,s — H uvz,s) Cee,steit

<00y

Assumption C.9 implies that

t=

1 s=1 t=1 s=

<Op( )

%~
M

70

1 T
S <T ; H'Evz,s - H,

T

ZH Uyz erN(S t)elt <O (
s=1

(eiseit))) eit = Op(

2l

1
2
uvz,sHF>
s=1

N}

Nl =
(]

/N
el

14=1

?)5 (s, 0)2(Ee2) = O()  (110)

1
T
1
TmNT)
(111)
) a1

1
T2 Z Z Uyz sCee st€it = \/t (T Z <\/7 Z Z Uyz,s ezsezt E (eiseit))

)

(114)
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and thus

T T T T
1 1 1
as = ﬁ tZ:; sz:; uvz s uvz,s) Cee,steit + ﬁ tz:; Sz:; H/’LL’UZ,SCBG,Steit S Op(m) (115)
Assumption C.9 implies that
1 1 1
ZCU@ st€it = \/— vz s ( tz:; (\/]V ; Cﬁy,i@it) 6it> = Op(ﬁ) (116)

and thus with Theorem C.3 we know

=

1
2

| LT 1 I (1T 2\ 2
~ 2
ﬁ Z Z (uvz,s - H/Uvz,s) Cue,steit < ( Z Huvz s Uvz,sHF> T Z (T Z Cue,st@'t)
t=1 s=1 s=1 t=1
<Oy () (117)
— P/ Nmnr
Assumption C.8 and C.1 imply that
1 T N N 1
P S el i)y <L Sl = Op() (118)
t=1 j=1 ] 1

Assumption C.9 implies that = ST Zjvzl cgr.i (ejeeit — Te(i,§)) = Op(—~=) and thus with equa-

3

tion (118) we know

|, LN , TN
NT D cpiejiei = NT DY e (ejiei — (i, §) + 7liy )

t=1 j=1 t=1 j=1
1 1
<Op(—==) + Op(37) (119)
VNT N
Therefore,
1 T T 1 T T
= ﬁ Z Z (ﬂvz,s - H/Uvz,s) Cue,steit + ﬁ Z Z Hluvz,sCuasteit S Op(mNT) (120)
t=1 s=1 t=1 s=1
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Assumption C.9 implies that

N
1 1
*E Ceustezt g eztuvzt NE CB~,j€js :Op(\/N) (121)

j=1

and thus with Theorem C.3 we know

-

L -y 2\ [ 1 1 & 2\ *
ﬁ Z Z (171)273 - H/uvz,s) Ceu,steit < ( Z Huvz s — uvzvsHF> T Z (T Z Cue,steit>
t=1 s=1 s=1 t=1
<Op(——) (122)
— "V Nmnr
Assumption C.9 implies that
1 r r 1 1 T 1 T 1
— U ey —m—— | —— W € = o e | = O (—2— 193
T2 ;SZ:I vz,sCeu,st ot /7NT ( liNT SZ:I vz,sCg ﬁ’y) (T ; vz,t zt) p(\/ﬁ) ( )
Therefore,
| rr | I
a4 = ﬁ ZZ ('ljvz,s - H,uvz,s) Ceu,steit + ﬁ Z ZH/uvz,sCeu,steit < Op(mNT) (124)
t=1 s=1 t=1 s=1
Similar to the derivation of equation (100)
T T
L sy L\ VN 1
H NT? Z U, Prugug eir|| < NT Z Uy, Prug T — Z Ug t€it OP(T) (125)
=1 F t=1 F t=1 F
1 r 1
as NT2 Za;zpéugugﬂfeit < Op(f) (126)
t=1
Equation (104) implies that
1
a6 = NTQ Z Meaug (Ugr — ugt) it < Op(mNT) (127)

(2) For the term %ugz (uvz - uvzH_l) CBr,i
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Similar to the analysis of the term % (y> — Uy, H)' €5, equation (80) implies

t=1
1 T T T T T T
vl (T ) DIPIHIVEEES 5 DI IR 9 S S )
t=1 s=1 =1s t=1 s=1
1 T T
-1
+ VNT <2 Z Z Unz,slyz, tCeu st NT2 Z uvaGugug tuvz )t + NT2 Z MGug ugt ugﬂf) ugz,t)
t=1 s=1
6
Vil e (128)
j=1

Following the same proof as the one for a; in the term % (Uyy — Uy, H )'ei, Assumption C.6 and

Lemma 1(i) in Bai and Ng (2002) imply that

l\')’_\
M=

T
Z uvzs_Huvzs)'YN(S t) Uzt
T

t=1 s=1 F
1
3 T T T 2
1 1 2 ? 1 2 1 ’ 1
S—= - = )= <0
_\/T < ; H'U/uzs u'UZ75HF> (T;;VN(S ) T;UUZ tuvz7t p( TmNT
(129)
and Assumption C.7 and Lemma 1(i) in Bai and Ng (2002) imply that
| T 1 ) 1
2\2 2.1
T2 Z Z Uyz S’YN S, t uvz ,t S T2 Z Z <E ”U‘vz,SHF> ’7N(57 t)Q(E HUUZ,tHF)2 = O(T)
t=1 s=1 t=1 s=1
(130)
and thus
< Oy ! ) (131)
a e —
AN vy
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Assumption C.9 and Lemma C.2 imply that

T

1 T
ﬁ Z Z (ﬂvz,s - H/u'uz,s) Cee,stuijz,t

t=1 s=1

Assumption C.9 implies

1 & 1 N
2 Z Z Uyz suvz tCee st = \/—T (T Z: Uyz,s (]\7T Z Z

s=1t=1

and thus

T T T T
1
= ﬁ Z Z Uvz s - H Uyz s) Uy tCee st + Z Z Hluvz,sugz,tCee,st < Op(
t=1 s=1

t=1 s=1

Assumption C.9 implies that

T

1 1 1

T Z Cue,stu;)z,t e~ \/Ni Uyz,s ( NT Z Z Cﬁw,ieitui;z,t
t=1

t=1 i=1

and thus

T T T T
D D) DN LE ZZ Uz |
2 vz,sSue,styy t — Upz,s V2,5
T =1 s=1

t=1 s=1

and with Lemma C.2 we know

1 T T
ﬁ Z Z (ﬂvz,s - H/uvz,s) Cue,stuvz,t

t=1 s=1

1

SO N T

74

1 T
< <T2Hﬂvz,s_ uvstF>
F s=1

1 T
< (T Z Havz,s - HlUvz,sHi;)
F s=1

2

T N
/
§ : § :Cﬁ%ieituvz,t

1
) ~ T

)

T
/
T ee sty t

(eiteis — Eejreis) U@,t)) = Op(ﬁ)

)

mNrT

2

F

(132)

1

(133)

(134)

(135)

2
Cue,stuvz,t>

(137)

(NI

N



Therefore,
T T 1 T T 1
Z Z Uz s uvz,s) Cue,stui;z,t + ﬁ Z Z H/uvz,$<ue78tu;z,t < Op(ﬁ) (138)

t=1 s=1 t=1 s=1

3~

Assumption C.9 implies that

T T ( T N 1 T 1
/ / !/
Z Z UZ,SC@u,Stuvz,t Z Z UUZ’SC/B,%ieis) ( Z Uvz,t”yz,t) = Op(i)
t=1 s=1 s=1 i=1 T t=1 \/ﬁ

gﬂ
T

and

1 E 1 | X | )
_ - | — /. - / — O (— 140
FY Gosns = ( Wz[g) (TZ““> FEE

and thus with Lemma C.2 we know

[SIE

1 T T
ﬁ Z Z (aWZVS - H/uvz,s) Cue,stuvz,t

t=1 s=1

11 ’
T Z (T Z Cue,stuvz,t)

s=1 t=1

T
< < ZHuvzs_ uvz,sH?)
F :

§0p<mlw> (141)

T T T
1 _ 1 .
a4 = T2 ; SE:I (Uyz,s - H/Uvz,s) Ceu,stuijzﬂf + T2 ; ; H,uvz,sCeu,stU;Z,t < Op(\/ﬁ

) (142)
Similar to the derivation of equation (126)

T
1 B 1
= e 2 et taten < O(p) —

and similar to the derivation of equation (127)

1

myT

a6 = NTzZ Mg (Ugs — uge) .y < Op( ) (144)

5
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Therefore,

/ 1 !~ 1

Uz H + = (Uyz — Uz H) (Upz — upH) < Op( ) (145)
mrT

1 — 1
T (uvz - UvzH)/ Uyz = T (uvz - uUZH)
(3) For the term -, (Ug; — ug,;)
1 1 <& 2 1
~ ! _ . ~ o / 2 - _ i
HT (Uuz - uqu) PGugJ . < (T sz:; Huvz,s H uvzv‘SHF> \/T ||PG’UJQ7ZHF < Op(i\/m)
(146)
Similar to the derivation of equation (100)
1, 1
Tu'uzPG’ung < OP(T) (147)
and thus
1., 1 , 1,
Tuvz (ugyi - ug7i) :T (UUZ - UUZH) PG_’ugai + Tuvzpéugﬂ' (148)
O

Theorem C.5. Suppose Assumptions 2.1 - 2.2, C.1 - C.9 hold, let N,T increase then

1
2 N
1 - m?2 . 1
mJ2\7T (Cit - cit) :ﬁdﬁ’m (CEVCBW/N) ﬁ g CBry,jEjt
j=1
1
m2 1 1 1
NTU;z,t (u;}zuvz/T) ﬁU;ZQ’ + Op(m)

T

Proof.
(ﬂvz,t - H,“vz,t)/ H_lcﬁw‘ + u;z,tH (Eﬁw’ - H_lcﬁw‘)

~ ~ ~ /
Cit = Cit =Uqz 1CBy,i — Uz tCBy,i =
-1
- H Cﬁw‘)
1

+ (avz,t - H/uvz,t)/ (Eﬂv,i
) (149)

— (ﬂvz,t — H’uvz’t)’ H_lcﬁv,i —+ u;;z,tH (Eﬁ"/,i — H_lcﬂ%i) + Op(mNT
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Theorem C.3 implies that

1 T N
1 ’_ ~ m / ]. — ].
1 (uvz,t — HlUvz,t) = %657 ; IVNTT Z (u’UZ7Su2)z,s) ﬁ Z Cp,i€it + Op(l)
s=1 i=1

mNTc@7 H
1

mN

VN

-1

o Yl

—=Clay i (Cysy/N)

and Theorem C.4 implies that

1
1 N B m2
]2\7Tu2)z,tH (Cﬁ%i - H 165’)%) _% fuz tHH/f vz€i + Op(l)
1
m?2 ]
- %u;z,t (u(uzuvz/T) ﬁu;zel + Op(l)
where the last equality is due to
HH' = () u,./T) " + Op(——)
mnNT
and finally Therefore,
m% 1 1 N
NT ./ / -
= CBy,i (Cﬁvcﬂv/N) Z CB,iCit
VN N &

1 ~
myr (Cit — Cit)
1

€; + Op(m

1
2

m
NTu/

\/T vz,t

/

—=U

\/T’l)z

uUZ/T)_1

( /
u'UZ

_'_

Cc.3 (3)

Proof of Theorem 4.1. Rewrite moment conditions as consider

LN :E]VG,Tg-i- €

with 6 = O + (0, ((—f{;l T — 1g), (fglvq - IK)) 9(;)')/.

7

(150)

(151)

(152)

) (153)

(154)



Equation (154) implies

-1
) -0 = (e, i) WPy 2

N . )
T =000 0’ + (CC(” = ) GO + £V GO AT

5511265;, - Q(l) (Cl’ Bg Z)/

~§gc i Cczt
tETu)
1 1 N _
Z i (Chycsy/N) Z C8y,5€jt Gt
’Tl = VN j=1
1 1 _ 1
|7— 27—: Uy, t UUZ/T) ﬁu;zeiGt + Op(mNT)

1 / / -1
B — ) (65VCBW/N) Z Z Cﬁ'y,zeﬁth
N’ﬁ1)| \/Wte']’“) i=1

-1 1
uUZ/T Uz, 5€is T+ @) (

_ 1
Gy, 7
\/T\T\MT t;ﬁl) : t s:l Pomnr
<Op(———m)

)

’ﬂ
Mq

78

(155)

(156)
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Suppose |T(y| = |T(2)] = 7. We next discuss the properties of the following three terms: (1)

1) 2 2)’
QBg,TqG TG(G QBT (Q)Q(G%Zl(a):m (3 )a(G,)TEﬂ)'
(1)
Z cz gc;z — Op(i) (159)
— ’ VT
1 7(2);
NQBéhTXg,Cﬁg g, C/BQQBQ,T _>pQg770,6’gQg (160)
Equation (31) implies
N|7- ‘Z Z ezthGt —>P2GG7N (161)
Wi=1 te7,
and
1
Z > enGieisGs = Op(—) (162)
f \/>|T1 1=1t€T (1) s#t \/N
Therefore,

N N
(o) = / 1 1 ~
%Xg(?e Xy = % D T ot = 3 2 et > G
i=1 i—1 \\/|T)| te7y \/ !Tz )| €T
N
1 o
= Z Z eitGIthGZt + = Z Z Z eztG G s€is —7p EGG’YN (163)
N|T9) < N |T |
1=1t€T(q) i=1t€T(9) s#t
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VT ZQ 272 )

9,cBg,i" g,ccyi

1A

N /
- Y Q- Q T ¢, B Z/ Cgy.i (CgyC /N -1 c J-eié
\/WN;(G B ( 9))(5’7(6757 \/mgzlﬂv tt)

\/; N @ . T .
N Q Q g, T B ) G uvz = uvz/T Uyz,s€is
,/Tm| N Z;( 7 )(’/th;%) t fz::
1 1
O <O~

~(2) Yo IRV 1 = / 1
IQBQ szg cfBg,i 2221 - \]/\7; ; (Qg)QBg,T (Ciaﬁg,i) ) (T Z Cz‘th> = Op(i]\/')

N !/
T 1 , , 1
== E ————=Ci (Cycpr/N) E : E i€t Gl E , eitG
N ( N|To)l e \/N’Tz)\ €T (9 =1 | )

T N -1
+ — G uvz Uvzuvz/T Uyz,s€is + O ( )
N; ( T\T| \/m 2 7 Z mAT )

‘ Z ezth
M teT

=0p(—=) (165)
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Therefore,

2
7QBQ:T~(G)TZIE¥ TQBgv - Z QBngxg,z xg 7 QBg,

7262397 ( 905q2+x22261+x() ) (Nézgﬁq, +x§gcz gez) @B, T

N

2

1 ~(2) =) 7@ =2
:NQBQ (Z gcﬁg,l gcﬁg QBgT+QBg7T/\/> AT g,ccyi gccz

)

o

’]’ ~ ~ !
N (N zx;%g,ixg%g,i) Qi1 17+ Oy
=1

:ancﬁgQg + WIEG’G"YNW!E + Op( )

Si-

with W, = lim Qp,r/v/7.
(2)

1 v(1); (2
NQBQ,TX§725gX;7259QBQ,T %pancBgQg

)

2

N
~(2)’
AT E : cczxg,ccz = o (

%\

N N
TN~ ) L 3 1 S e 1 3
Y: Loeilgei = nr esG =
Nz 7 N Tl ser Tyl 7,
(1) 1) (2) (2)

1 & ~ A 1
:NiTZ ; Z eitGQGseis :Op(ﬁ)

tETQ)
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(167)
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ﬁZQB PO

9,cBg,i" g,ccyi

N /
B Z (QG QBg (Cl’ﬁg z)/) C,B'yz (Cﬁ'ycﬁv/N P — Z Zcﬁ%ieitét

N’7—(2)| N i=1

PR ﬁﬁ:@ Qp,.r (ci, By )/) ( Y Guuys XT: vstioz/T) luvzvS‘f“)
: V1Tl e, VT

T’7Z2)| N i=1
1 1
+OP( mNT) :OP( mNT>

~(2) Yo IRV 1 = / 1
IQBQ szg cfBg,i 2221 - \]/\7; ; (Qg)QBg,T (Ciaﬁg,i) ) (T Z Cz‘th> = Op(i]\/')

N
T ~(1) ~(2)
N Z Lgeeitg.e,i
/
T N 1
N Z 667 i Cﬁ'ycﬁ'Y/N) Z Z CBr, Jetht | Z eZth
i=1 N\T \/N’Tl)‘ €Ty =1 )
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+ — G uvz Uvzuvz/T Uyz,s€is + O ( )
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E ezth>

M e

|
1
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Therefore,

1 /
NQBQ,T(AIS’)TE@)TQBQ,T Z QBg,Tﬁg ; 969 ; QBg,
1 ~(1) =)\ (=@ ~(2)
NZ By, T ( gcﬁ z+$gccz+xg,ez)< gcﬁ z+$gccz gez) QB£77
1 ) )

:NQBQ,T (; Ty 8,,i%q,ch,, ) Qp, 1+ Op (f) QgNep,Qg + Op (ﬁ) (172)

20 (30, 430, )7 73

Equations (169)-(171) imply that

QBQ,T Z afg i <~éle i é%m)l

T ~ ~ " /
:\/\%QBQT Z (xé?igg,@- Ty + Tor ) (xéﬁz +30, ) = 0Op(1) (174)
=1

which provided that ||0¢||» < L then gives

\/ QBg Ta(GQTEﬂ) = Op(l) (175)

Finally

7

FQB T( Y _0(1)>

)

-1
1 1 /
( Qp, 7 ric rQs,.T <NQBQ,TX@ @ Qs,1 ) NQBQ,Taé,??Ta(G”TQBg,T>

1 1 = (o) e /
X NQBg,Ta(Gl)Ta(GQ)TQBQ,T <NQBQ,TX§2) ag7)TQBg,T> NQBg,TZIg?TEﬂ) = 0p(1), (176)

which then leads to VNTQ! - (6 — 0c) — O,(1).
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Next we propose the following f]gG:

where Eg is a consistent estimator for the variance of 6 and

—1 N , _
§\3 - (‘A](G )TP~<G2> da T/N) (2; <<Z]{Gv)TP§<G2,)T)i €; > <<Z](G’)TPEI<G2>T>1 €; ) > <Q{G’)TP‘A1(G2)T6(G’)T/N>

-1 N ! B
- ' ~(2) ! 2(2)
S0 = (@5 py, 380/ (z (a5, ) 27) ((@0eg,) &) ) (#hrg i)

i=1
The validity of our proposed covariance estimator relies on some additional regular assumptions:

Assumption C.10. We assume the following holds:

(1)
fer §1,4,T &
1% vregied, _li g || S
N - ~(j) TN« ¢
i=1 Uy i=1 m,:T m
ﬂéjz) N2,4,T 2

~(7) _

oy ~) j ~(4)
with e, = |T( N Zt€7—( ) eaGh ug =

ﬁ Ztg—m umtéé, Ue = ﬁ Ztg—m Uyz,itCt-
(2) &1,&2,55+, are independent from 1,12, and % Zfil fi,sz/',T —p B¢ with & = ()

Assumption C.10 can be relaxed if we assume for example /T /N — 0 and then certain sampling
errors would be negligible. Now we briefly discuss the validity of our proposed covariance estimator.

From the above discussions, we know

1
1 1) (2 1 2)! (2 ! 2)"
<NQBQ,TEJ<G,)TEJ<G,)TQB$,,T <NQBQ,TZI(G7)T(,AI£;’)TQBWT> NQBQ,TZI(G)TQG TQB,T )

)

1
X 7QBgquG TqG TQBgv <NQBQ T(}{GQ)TqG TQqu ) —p O (177)

with © (1) a deterministic positive definite matrix. Then we only need to look at the term /@5 g,TE](G) RON
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Equations (169)-(171) imply that

Similar to the previous discussion, we have

~(2 A I ~(2 =
;C)Bgv Q (ciaﬁgz ( ) = Z eitG{‘?

+ o \/\T \/m =

and equation (149) implies that

~ ~ / -1 / ~ -1
Cit — Cit = (u’l)Zﬂf - H uvzvt) H cﬁyui + u’UZ tH (65777: - H Cﬁ"f’i)
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1 1 1
+ <ﬁVNTlT E :(uvzs vzs \/> E :Cﬁ"/,zezt> (\/THI\/TU{l)Zei

s=1
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1
\/* Z cgygejt | + op(

7j=1

L, N,
+ <Tuvzei> \/7NHH (CB’YCB'Y/N)
= (ﬁvz,t - Hluvz,t)/ H_lcﬁw' + “;z,tH (%w - H_lcﬁw‘)
-1

1 "1 _
+ (Tui,zei> \/—N (u;ZuUZ/T) ! (0’57057/1\7)

1

1

1 "1 1
+<Tu;zei> ﬁ(ugzuw/T) (csycay/N)
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-1 1 -1
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(178)



and thus

-1

Ng(yzc):c i Z \/icﬁ'y i (Cﬁvcﬁ’Y/N \/* Z CB, JeﬂGt

| (2)| teT(g)
1 1
|7-(2’ Z \/* vzt uvzuUZ/T) \/*uvzeth
teT<2)
+1Z<1u’e>(u Uy /T~ 1(0 cgy/N) 11%0 eitGy + op( )
|7-(2)’ o T vzt \/7 vz vz By By \/Nj:1 B7,3€3 P mNT

1 1
- Z Z //3 (Cﬂvcﬁv/N) 1cﬂwe]th)

\/N\T@)I \/N|T(2)\ J=1 €T

1 _1 < 1, >
G vz vz vz r T Yz G
N ¢W' 2 Gt | (s 1) { e

t€7—(2)

1 1 1 _
(TU;zei) N (upot002/T) 1(%7057/]\7 o Z CBv.j \/|7 Z one

T | t€7'(2>

1 1 1
7+ Ol

1
— —)+0,(7) )+ opl ) (180)

VNT mNT

Combined with previous discussions

T /
\ 3 Qporic e —a Hmé

with H(.) a deterministic function. The limiting distribution is a mixed Gaussian distribution, and
the rests are implied then by Assumption C.10.
O

Proof of 4.1.2. By construction of the HJN statistic, ﬁqgm R (5@ — 0@) would be of the order
Op( (1 /2) when N/T — ¢, and thus these sampling errors would be negligible. Thus the asymptotic
distribution of the HJN statistic is determined by the distribution of the sample pricing errors
er.r(0c). The consistency of S = %Z;‘le eg7t,R(5g)eg7t,R(§G)’ is implied by Theorem 4.1 and

Assumptions 2.1 - 2.3. O
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